Skip to main content
Log in

Male Osteoporosis

New Trends in Diagnosis and Therapy

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Osteoporosis is a common condition in men affecting approximately 2 million males in the US. Compared with women, osteoporosis develops later in life and the incidence of osteoporosis-related fractures is lower in men. The morbidity and mortality associated with osteoporotic fractures are much greater in men compared with women, and secondary causes of osteoporosis are more frequently (in approximately 50% of cases) identified in men compared with women with osteoporosis. Excessive alcohol consumption, glucocorticoid excess and hypogonadism are the most commonly identified causes. Primary osteoporosis in men has been linked to changes in sex steroid secretion, the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis and the vitamin D-parathyroid hormone (PTH) 25-hydroxyvitamin D [25(OH)D]-PTH system.

Diagnosing osteoporosis in men is complicated by an ongoing debate on whether to use sex-specific reference values for bone mineral density (BMD) or female reference values. The International Society for Clinical Densitometry recommended using a T score of −2.5 or less of male reference values to diagnose osteoporosis in men who are ≥65 years of age. However, this definition is yet to be validated in terms of fracture incidence and prevalence.

Ensuring adequate calcium and vitamin D intake is the cornerstone of any regimen aimed at preventing or treating osteoporosis in men. Bisphosphonates are currently the therapy of choice for treatment of male osteoporosis. A short course of parathyroid hormone (1–34) [teriparatide] may be indicated for men with very low BMD or in those in whom bisphosphonate therapy is unsuccessful. The use of testosterone-replacement therapy for the prevention and treatment of male osteoporosis remains controversial but likely to benefit osteoporotic men with evident hypogonadism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Looker AC, Orwoll ES, Johnston Jr CC, et al. Prevalence of low femoral bone density in older US adults from NHANES III. J Bone Miner Res 1997; 12: 1761–8

    Article  PubMed  CAS  Google Scholar 

  2. Diamond TH. Pharmacotherapy of osteoporosis in men. Expert Opin Pharmacother 2005; 6(1): 45–58

    Article  PubMed  CAS  Google Scholar 

  3. Poor G, Atkinson EJ, Lawallen DG, et al. Age-related hip fracture in men: clinical spectrum and short-term outcomes. Osteoporos Int 1995; 5: 419–26

    Article  PubMed  CAS  Google Scholar 

  4. Boonen S, Vanderschueren D. Bone loss and osteoporotic fracture occurrence in aging men. In: Lunenfeld B, Gooren L, editors. Textbook of men’s health. New York: Parthenon Publishing Group, 2002: 455–62

    Google Scholar 

  5. Orwoll ES. Osteoporosis in men. Endocr Rev 1995; 19: 87–116

    Google Scholar 

  6. Turner RT. Skeletal response to alcohol. Alcohol Clin Exp Res 2000; 24(11): 1693–701

    Article  PubMed  CAS  Google Scholar 

  7. Yuan Z, Dawson N, Cooper GS, et al. Effects of alcohol-related disease on hip fracture and mortality: retrospective cohort study of hospitalized Medicare beneficiaries. Am J Public Health 2001; 91(7): 1089–93

    Article  PubMed  CAS  Google Scholar 

  8. Compston J. Glucocorticoid-induced osteoporosis. Horm Res 2003; 60Suppl. 3: 77–9

    Article  PubMed  CAS  Google Scholar 

  9. O’Brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 2004 Apr; 145(4): 1835–41

    Article  PubMed  Google Scholar 

  10. Van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 2002; 13(10): 777–87

    Article  PubMed  Google Scholar 

  11. Stanley HL, Schimt BP, Poses RM, et al. Does hypogonadism contribute to the occurrence of a minimal trauma hip fracture in elderly men? J Am Geriatr Soc 1991; 39: 766–71

    PubMed  CAS  Google Scholar 

  12. McElduff A, Wilkinson M, Ward P, et al. Forearm mineral content in normal men: relationship to weight, height and plasma testosterone concentrations. Bone 1988; 9: 281–3

    Article  PubMed  CAS  Google Scholar 

  13. Ongphiphadhanakul B, Rajatanavin R, Chailurkit L, et al. Serum testosterone and its relation to bone mineral density and body composition in normal males. Clin Endocrinol 1995; 43: 727–33

    Article  CAS  Google Scholar 

  14. Finkelstein JS, Klibanski A, Neer RM, et al. Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 1989; 69: 776–83

    Article  PubMed  CAS  Google Scholar 

  15. Orwell ES, Stribraska EB, Ramsey EE, et al. Androgen receptors in osteoblast-like cells. Calcif Tissue Int 1991; 49: 183–7

    Article  Google Scholar 

  16. Masuyama A, Ouchi Y, Sato F, et al. Characteristics of steroid hormone receptors in cultured LC3T3-E1 osteoblastic cells and effects of steroid hormone receptors on cell proliferation. Calcif Tissue Int 1992; 51: 376–81

    Article  PubMed  CAS  Google Scholar 

  17. Mozuno Y, Hosoi T, Inoue S, et al. Immunocytochemical identification of androgen receptor in mouse osteoclast-like multinucleated cells. Calcif Tissue Int 1994; 54: 325–9

    Article  Google Scholar 

  18. Vanderschueren D, Bouillon R. Androgens and bone. Calcif Tissue Int 1995; 56: 341–6

    Article  PubMed  CAS  Google Scholar 

  19. Kamel HK, Perry HM, Morley JE. Hormone replacement therapy and fractures in older adults. J Am Geriatr Soc 2001; 49: 179–87

    Article  PubMed  CAS  Google Scholar 

  20. Preston DM, Torrens JI, Harding P, et al. Androgen deprivation in men with prostate cancer is associated with an increased rate of bone loss. Prostate Cancer Prostatic Dis 2002; 5(4): 304–10

    Article  PubMed  CAS  Google Scholar 

  21. Melton III LJ, Alothman KI, Khosla S, et al. Fracture risk following bilateral orchiectomy. J Urol 2003; 169(5): 1747–50

    Article  PubMed  Google Scholar 

  22. Seeman E. Osteoporosis in men: epidemiology, pathophysiology, and treatment possibilities Am J Med 1993; 95(5A): 22S–28S

    Article  PubMed  CAS  Google Scholar 

  23. Kamel HK. Osteoporosis and aging: etiology and current diagnostic strategies. Ann Long Term Care 1998; 6(11): 352–7

    Google Scholar 

  24. Khosla S, Melton III LJ, Atkinson EJ, et al. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 1998; 83: 2266–74

    Article  PubMed  CAS  Google Scholar 

  25. Reed BY, Zerwekh JE, Sakhaee K, et al. Serum IGF 1 is low and correlated with osteoblastic surface in idiopathic osteoporosis. J Bone Miner Res 1995; 10: 1218–24

    Article  PubMed  CAS  Google Scholar 

  26. Ljunghall S, Johansson AG, Burman P, et al. Low plasma levels of insulin-like growth factor 1 (IGF-1) in male patients with idiopathic osteoporosis. J Intern Med 1992; 232: 59–64

    Article  PubMed  CAS  Google Scholar 

  27. Kurland ES, Chan FKW, Rosen CJ, et al. Normal growth hormone secretory reserve in men with idiopathic osteoporosis and reduced circulating levels of insulin-like growth factor-1. J Clin Endocrinol Metab 1998; 83: 1–4

    Article  Google Scholar 

  28. Rosen CJ, Kurland ES, Vereault D, et al. An association between serum IGF-1 and a simple sequence repeat in the IGF-1 gene: implications for genetic studies of bone mineral density. J Clin Endocrinol Metab 1998; 83: 2286–90

    Article  PubMed  CAS  Google Scholar 

  29. Khosla S, Atkinson EJ, Dunstan CR, et al. Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. J Clin Endocrinol Metab 2002; 87(4): 1550–4

    Article  PubMed  CAS  Google Scholar 

  30. Khosla S, Melton III LJ, Riggs BL. Clinical review 144: estrogen and the male skeleton. J Clin Endocrinol Metab 2002; 87(4): 1443–50

    Article  PubMed  CAS  Google Scholar 

  31. Smith EP, Boyd J, Frank GR, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1994; 331: 1056–61

    Article  PubMed  CAS  Google Scholar 

  32. Morishima A, Grumbach MM, Simpson ER, et al. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 1995; 80: 3689–98

    Article  PubMed  CAS  Google Scholar 

  33. Bilezikkian JP, Morishima A, Bell J, et al. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 1998; 339: 599–603

    Article  Google Scholar 

  34. Colon-Emeric C, Yballe L, Sloane R, et al. Expert physician recommendations and current practice patterns for evaluating and treating men with osteoporotic hip fractures. J Am Geriatr Soc 2000; 48(10): 1261–3

    PubMed  CAS  Google Scholar 

  35. National Osteoporosis Foundation. Physician’s guide to prevention and treatment of osteoporosis. Washington, DC: National Osteoporosis Foundation, 2003

    Google Scholar 

  36. Eastell R, Boyle IT, Compston J, et al. Management of male osteoporosis: report of the UK Consensus Group. QJM 1998; 91(2): 71–92

    Article  PubMed  CAS  Google Scholar 

  37. Report of a WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser 1994; 843: 3–5

    Google Scholar 

  38. Writing Group for the ISCD Position Development Conference. Diagnosis of osteoporosis in men, premenopausal women, and children. J Clin Densitom 2004 Spring; 7(1): 17–26

    Article  Google Scholar 

  39. Kanis JA, Seeman E, Johnell O, et al. The perspective of the International Osteoporosis Foundation on the official positions of the International Society for Clinical Densitometry. J Clin Densitom 2005; 8(2): 145–7

    Article  PubMed  Google Scholar 

  40. Benito M, Gomberg B, Wehrli FW, et al. Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 2003; 88: 1497–502

    Article  PubMed  CAS  Google Scholar 

  41. Jackson JA, Kleerekoper M, Parfitt AM, et al. Bone histomorphometry in hypogonadal and eugonadal men with spinal osteoporosis. J Clin Endocrinol Metab 1987; 65: 53–8

    Article  PubMed  CAS  Google Scholar 

  42. Kelepouris N, Harper KD, Gannon F, et al. Severe osteoporosis in men. Ann Intern Med 1995; 123: 452–60

    PubMed  CAS  Google Scholar 

  43. Orwoll ES, Oviatt SK, McClung MR, et al. The rate of bone mineral loss in normal men and the effects of calcium and cholecalciferol supplementation. Ann Intern Med 1990; 112: 29–34

    PubMed  CAS  Google Scholar 

  44. Dawson-Hughes B, Harris SS, Krall EA, et al. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997; 337: 670–6

    Article  PubMed  CAS  Google Scholar 

  45. NIH Consensus conference. Optimal calcium intake: NIH consensus development panel on optimal calcium intake. JAMA 1994; 272: 1942–8

    Article  Google Scholar 

  46. Walden O. The relationship of dietary and supplemental calcium intake to bone loss and osteoporosis. J Am Diet Assoc 1989; 89(3): 397–400

    PubMed  CAS  Google Scholar 

  47. Orwoll ES, Ettinger M, Weiss S, et al. Alendronate for the treatment of osteoporosis in men. N Engl J Med 2000; 343: 604–10

    Article  PubMed  CAS  Google Scholar 

  48. Kamel HK, Hajjar RR. Osteoporosis for the home care physician. Part 2: management. J Am Med Dir Assoc 2004; 5(4): 259–62

    Article  PubMed  Google Scholar 

  49. Kamel HK. Underutilization of calcium and vitamin D supplements in an academic long term care facility. J Am Med Dir Assoc 2004; 5: 98–100

    Article  PubMed  Google Scholar 

  50. Bauer E, Aub JC, Albright F. Studies of calcium and phosphorous metabolism: V. A study of the bone trabeculae as a readily available reserve of calcium. J Exp Med 1929; 49: 145–62

    Article  PubMed  CAS  Google Scholar 

  51. Selye H. On the stimulation of new bone-formation with parathyroid extracts and irradiated ergosterol. Endocrinology 1932; 16: 547–58

    Article  CAS  Google Scholar 

  52. Kurland ES, Cosman F, McMahon DJ, et al. Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 2000; 85(9): 3069–76

    Article  PubMed  CAS  Google Scholar 

  53. Orwoll ES, Scheele WH, Paul S, et al. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 2003; 18(1): 9–17

    Article  PubMed  CAS  Google Scholar 

  54. Finkelstein JS, Hayes A, Hunzelman JL, et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 2003; 349(13): 1216–26

    Article  PubMed  CAS  Google Scholar 

  55. Tenover JS. Effects of testosterone supplementation in the aging male. J Clin Endocrinol Metab 1992; 75: 1092–8

    Article  PubMed  CAS  Google Scholar 

  56. Morley JE, Perry III HM, Kaiser FE, et al. Effects of testosterone replacement therapy in old hypogonadal males: a preliminary study. J Am Geriatr Soc 1993; 41: 149–52

    PubMed  CAS  Google Scholar 

  57. Katznelson L, Finkelstein JS, Schoenfeld DA, et al. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 1996; 81: 4358–90

    Article  PubMed  CAS  Google Scholar 

  58. Snyder PJ, Peachey H, Hannoush P, et al. Effect of testosterone treatment on bone mineral study in men over 65 years of age. J Clin Endocrinol Metab 1999; 84(6): 1966–72

    Article  PubMed  CAS  Google Scholar 

  59. Behre HM, Kliesch S, Leifke E, et al. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 1997; 82: 2386–90

    Article  PubMed  CAS  Google Scholar 

  60. Reid IR, Wattie DJ, Evans MC, et al. Testosterone therapy in glucocorticoid-treated men. Arch Intern Med 1996; 156: 1173–7

    Article  PubMed  CAS  Google Scholar 

  61. Sih R, Morley JE, Kaiser FE, et al. Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab 1997; 82: 1661–7

    Article  PubMed  CAS  Google Scholar 

  62. Tenover JS. Effects of testosterone supplementation in the aging male. J Clin Endocrinol Metab 1992; 75: 1092–8

    Article  PubMed  CAS  Google Scholar 

  63. Morley JE, Kaiser FE, Sih R, et al. Testosterone and frailty. Clin Geriatr Med 1997; 13(4): 685–94

    PubMed  CAS  Google Scholar 

  64. Kamel HK, Bida A, Montagnini M. Secondary prevention of hip fractures in veterans: can we do better? J Am Geriatr Soc 2004; 52(4): 647–8

    Article  PubMed  Google Scholar 

  65. Meryn S. Undertreatment of osteoporosis in men [abstract]. Arch Intern Med 2005; 165(2): 241

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosam K. Kamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamel, H.K. Male Osteoporosis. Drugs Aging 22, 741–748 (2005). https://doi.org/10.2165/00002512-200522090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200522090-00003

Keywords

Navigation