Skip to main content
Log in

Pharmacokinetics of Proton Pump Inhibitors in Children

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The use of proton pump inhibitors (PPIs) has become widespread in children and infants for the management of paediatric acid-related disease. Pharmacokinetic profiles of only omeprazole and lansoprazole have been well characterised in children over 2 years of age with acid-related diseases. Few data have been recently published regarding the pharmacokinetics of pantoprazole in children, and none are available for rabeprazole or esomeprazole. The metabolism of PPI enantiomers has never been studied in the paediatric population.

A one-compartment model best describes the pharmacokinetic behaviour of omeprazole, lansoprazole and pantoprazole in children, with important interindividual variability for each pharmacokinetic parameter. Like adults, PPIs are rapidly absorbed in children following oral administration; the mean time to reach maximum plasma concentration varies from 1 to 3 hours. Since these agents are acid labile, their oral formulations consist of capsules containing enteric-coated granules. No liquid formulation is available for any of the PPIs. Thus, for those patients unable to swallow capsules, extemporaneous liquid preparations for omeprazole and lansoprazole have been reported; however, neither the absolute nor the relative bioavailabilities of these oral formulations have been studied in children. Intravenous formulations are available for omeprazole (in Europe), lansoprazole and pantoprazole.

PPIs are rapidly metabolised in children, with short elimination half-lives of around 1 hour, similar to that reported for adults. All PPIs are extensively metabolised by the liver, primarily by cytochrome P450 (CYP) isoforms CYP2C19 and CYP3A4, to inactive metabolites, with little unchanged drug excreted in the urine. Similar to that seen in adults, the absolute bioavailability of omeprazole increases with repeated dosing in children; this phenomenon is thought to be due to a combination of decreased first-pass elimination and reduced systemic clearance. The apparent clearance (CL/F) of omeprazole, lansoprazole and pantoprazole appears to be faster for children than for adults. A higher metabolic capacity in children as well as differences in the extent of PPI bioavailability are most likely responsible for this finding. This may partly account for the need in children for variable and sometimes considerably greater doses of PPIs, on a per kilogram basis, than for adults to achieve similar plasma concentrations. Furthermore, no studies have been able to demonstrate a statistically significant correlation between age and pharmacokinetic parameters among children. Despite the small number of very young infants studied, there is some evidence for reduced PPI metabolism in newborns. The limited paediatric data regarding the impact of CYP2C19 genetic polymorphism on PPI metabolism are similar to those reported for adults, with poor metabolisers having 6- to 10-fold higher area under the concentration-time curve values compared with extensive metabolisers.

Finally, because a pharmacokinetic/pharmacodynamic relationship exists for PPIs, the significant interindividual variability in their disposition may partly explain the wide range of therapeutic doses used in children. Further studies are needed to better define the pharmacokinetics of PPIs in children <2 years of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Fig. 2
Table III
Table IV

Similar content being viewed by others

References

  1. Sachs G, Shin JM, Briving C, et al. The pharmacology of the gastric acid pump: the H+,K+ ATPase. nnu Rev Pharmacol Toxicol 1995; 35: 277–305

    Article  CAS  Google Scholar 

  2. Sachs G. Proton pump inhibitors and acid-related diseases. Pharmacotherapy 1997; 17: 22–37

    PubMed  CAS  Google Scholar 

  3. Lind T, Cederberg C, Ekenved G, et al. Effect of omeprazole: a gastric proton pump inhibitor: on pentagastrin stimulated acid secretion in man. Gut 1983; 24: 270–6

    Article  PubMed  CAS  Google Scholar 

  4. Faure C, Michaud L, Shaghaghi EK, et al. Lansoprazole in children: pharmacokinetics and efficacy in reflux oesophagitis. Aliment Pharmacol Ther 2001; 15: 1397–402

    Article  PubMed  CAS  Google Scholar 

  5. Faure C, Michaud L, Shaghaghi EK, et al. Intravenous omeprazole in children: pharmacokinetics and effect on 24-hour intragastric pH. J Pediatr Gastroenterol Nutr 2001; 33: 144–8

    Article  PubMed  CAS  Google Scholar 

  6. Kromer W. Similarities and differences in the properties of substituted benzimidazoles: a comparison between pantoprazole and related compounds. Digestion 1995; 56: 443–54

    Article  PubMed  CAS  Google Scholar 

  7. Huber R, Kohl B, Sachs G, et al. Review article: the continuing development of proton pump inhibitors with particular reference to pantoprazole. Aliment Pharmacol Ther 1995; 9: 363–78

    Article  PubMed  CAS  Google Scholar 

  8. Postius S, Brauer U, Kromer W. The novel proton pump inhibitor pantoprazole elevates intragastric pH for a prolonged period when administered under conditions of stimulated gastric acid secretion in the gastric fistula dog. Life Sci 1991; 49: 1047–52

    Article  PubMed  CAS  Google Scholar 

  9. Gedda K, Scott D, Besancon M, et al. Turnover of the gastric H+,K(+)-adenosine triphosphatase alpha subunit and its effect on inhibition of rat gastric acid secretion. Gastroenterology 1995; 109: 1134–41

    Article  PubMed  CAS  Google Scholar 

  10. Naesdal J, Bodemar G, Walan A. Effect of omeprazole, a substituted benzimidazole, on 24-h intragastric acidity in patients with peptic ulcer disease. Scand J Gastroenterol 1984; 19: 916–22

    PubMed  CAS  Google Scholar 

  11. Grahnquist L, Ruuska T, Finkel Y. Early development of human gastric H, K-adenosine triphosphatase. J Pediatr Gastroenterol Nutr 2000; 30: 533–7

    Article  PubMed  CAS  Google Scholar 

  12. Euler AR, Byrne WJ, Meis PJ, et al. Basal and pentagastrin-stimulated acid secretion in newborn human infants. Pediatr Res 1979; 13: 36–7

    Article  PubMed  CAS  Google Scholar 

  13. Hyman PE, Clarke DD, Everett SL, et al. Gastric acid secretory function in preterm infants. J Pediatr 1985; 106: 467–71

    Article  PubMed  CAS  Google Scholar 

  14. Kelly EJ, Newell SJ, Brownlee KG, et al. Gastric acid secretion in preterm infants. Early Hum Dev 1993; 35: 215–20

    Article  PubMed  CAS  Google Scholar 

  15. Grand RJ, Watkins JB, Torti FM. Development of the human gastrointestinal tract: a review. Gastroenterology 1976; 70: 790–810

    PubMed  CAS  Google Scholar 

  16. Israel DM, Hassall E. Omeprazole and other proton pump inhibitors: pharmacology, efficacy, and safety, with special reference to use in children. J Pediatr Gastroenterol Nutr 1998; 27: 568–79

    Article  PubMed  CAS  Google Scholar 

  17. Brunner G, Luna P, Hartmann M, et al. Optimizing the intragastric pH as a supportive therapy in upper GI bleeding. Yale J Biol Med 1996; 69: 225–31

    PubMed  CAS  Google Scholar 

  18. Hatlebakk JG, Katz PO, Camacho-Lobato L, et al. Proton pump inhibitors: better acid suppression when taken before a meal than without a meal. Aliment Pharmacol Ther 2000; 14: 1267–72

    Article  PubMed  CAS  Google Scholar 

  19. Kromer W. Relative efficacies of gastric proton-pump inhibitors on a milligram basis: desired and undesired SH reactions: impact of chirality. Scand J Gastroenterol Suppl 2001; 234: 3–9

    Article  PubMed  Google Scholar 

  20. Robinson M, Horn J. Clinical pharmacology of proton pump inhibitors: what the practising physician needs to know. Drugs 2003; 63: 2739–54

    Article  PubMed  CAS  Google Scholar 

  21. Gibbons TE, Gold BD. The use of proton pump inhibitors in children: a comprehensive review. Pediatr Drugs 2003; 5: 25–40

    Google Scholar 

  22. Zimmermann AE, Walters JK, Katona BG, et al. A review of omeprazole use in the treatment of acid-related disorders in children. Clin Ther 2001; 23: 660–79

    Article  PubMed  CAS  Google Scholar 

  23. Cucchiara S, Minella R, Iervolino C, et al. Omeprazole and high dose ranitidine in the treatment of refractory reflux oesophagitis. Arch Dis Child 1993; 69: 655–9

    Article  PubMed  CAS  Google Scholar 

  24. Gottrand F, Kalach N, Spyckerelle C, et al. Omeprazole combined with amoxicillin and clarithromycin in the eradication of Helicobacter pylori in children with gastritis: a prospective randomized double-blind trial. J Pediatr 2001; 139: 664–8

    Article  PubMed  CAS  Google Scholar 

  25. Shcherbakov PL, Filin VA, Volkov IA, et al. A randomized comparison of triple therapy Helicobacter pylori eradication regimens in children with peptic ulcers. J Int Med Res 2001; 29: 147–53

    PubMed  CAS  Google Scholar 

  26. Moore DJ, Tao BS, Lines DR, et al. Double-blind placebo-controlled trial of omeprazole in irritable infants with gastroesophageal reflux. J Pediatr 2003; 143: 219–23

    Article  PubMed  CAS  Google Scholar 

  27. Gunasekaran TS, Hassall EG. Efficacy and safety of omeprazole for severe gastroesophageal reflux in children. J Pediatr 1993; 123: 148–54

    Article  PubMed  CAS  Google Scholar 

  28. Karjoo M, Kane R. Omeprazole treatment of children with peptic esophagitis refractory to ranitidine therapy. Arch Pediatr Adolesc Med 1995; 149: 267–71

    Article  PubMed  CAS  Google Scholar 

  29. Kato S, Ebina K, Fujii K, et al. Effect of omeprazole in the treatment of refractory acid-related diseases in childhood: endoscopic healing and twenty-four-hour intragastric acidity. J Pediatr 1996; 128: 415–21

    Article  PubMed  CAS  Google Scholar 

  30. Martin PB, Imong SM, Krischer J, et al. The use of omeprazole for resistant oesophagitis in children. Eur J Pediatr Surg 1996; 6: 195–7

    Article  PubMed  CAS  Google Scholar 

  31. Cucchiara S, Minella R, Campanozzi A, et al. Effects of omeprazole on mechanisms of gastroesophageal reflux in childhood. Dig Dis Sci 1997; 42: 293–9

    Article  PubMed  CAS  Google Scholar 

  32. De Giacomo C, Bawa P, Franceschi M, et al. Omeprazole for severe reflux esophagitis in children. J Pediatr Gastroenterol Nutr 1997; 24: 528–32

    Article  PubMed  Google Scholar 

  33. Alliet P, Raes M, Bruneel E, et al. Omeprazole in infants with cimetidine-resistant peptic esophagitis. J Pediatr 1998; 132: 352–4

    Article  PubMed  CAS  Google Scholar 

  34. Bohmer CJ, Niezen-de Boer RC, Klinkenberg-Knol EC, et al. Omeprazole: therapy of choice in intellectually disabled children. Arch Pediatr Adolesc Med 1998; 152: 1113–8

    PubMed  CAS  Google Scholar 

  35. Strauss RS, Calenda KA, Dayal Y, et al. Histological esophagitis: clinical and histological response to omeprazole in children. Dig Dis Sci 1999; 44: 134–9

    Article  PubMed  CAS  Google Scholar 

  36. Hassall E, Israel D, Shepherd R, et al. Omeprazole for treatment of chronic erosive esophagitis in children: a multicenter study of efficacy, safety, tolerability and dose requirements. International Pediatric Omeprazole Study Group. J Pediatr 2000; 137: 800–7

    Article  PubMed  CAS  Google Scholar 

  37. Franco MT, Salvia G, Terrin G, et al. Lansoprazole in the treatment of gastro-oesophageal reflux disease in childhood. Dig Liver Dis 2000; 32: 660–6

    Article  PubMed  CAS  Google Scholar 

  38. Tolia V, Ferry G, Gunasekaran T, et al. Efficacy of lansoprazole in the treatment of gastroesophageal reflux disease in children. J Pediatr Gastroenterol Nutr 2002; 35 Suppl. 4: S308–18

    Article  PubMed  CAS  Google Scholar 

  39. Gunasekaran T, Gupta S, Gremse D, et al. Lansoprazole in adolescents with gastroesophageal reflux disease: pharmacokinetics, pharmacodynamics, symptom relief efficacy, and tolerability. J Pediatr Gastroenterol Nutr 2002; 35 Suppl. 4: S327–35

    Article  PubMed  CAS  Google Scholar 

  40. Madrazo-de la Garza A, Dibildox M, Vargas A, et al. Efficacy and safety of oral pantoprazole 20mg given once daily for reflux esophagitis in children. J Pediatr Gastroenterol Nutr 2003; 36: 261–5

    Article  PubMed  CAS  Google Scholar 

  41. El-Serag HB, Gilger M, Kuebeler M, et al. Extraesophageal associations of gastroesophageal reflux disease in children without neurologic defects. Gastroenterology 2001; 121: 1294–9

    Article  PubMed  CAS  Google Scholar 

  42. Yellon RF, Goldberg H. Update on gastroesophageal reflux disease in pediatric airway disorders. Am J Med 2001; 111 Suppl. 8A: 78–84S

    Article  Google Scholar 

  43. Rudolph CD. Supraesophageal complications of gastroesophageal reflux in children: challenges in diagnosis and treatment. Am J Med 2003; 115 Suppl. 3150–156S

    Article  Google Scholar 

  44. Wong RK, Hanson DG, Waring PJ, et al. ENT manifestations of gastroesophageal reflux. Am J Gastroenterol 2000; 95: S15–22

    Article  PubMed  CAS  Google Scholar 

  45. Gibson PG, Henry RL, Coughlan JL. Gastro-oesophageal reflux treatment for asthma in adults and children. Cochrane Database Syst Rev 2003; (1): CD001496

    Google Scholar 

  46. Khoshoo V, Le T, Haydel Jr RM, et al. Role of gastroesophageal reflux in older children with persistent asthma. Chest 2003; 123: 1008–13

    Article  PubMed  Google Scholar 

  47. Kato S, Shibuya H, Hayashi Y, et al. Effectiveness and pharmacokinetics of omeprazole in children with refractory duodenal ulcer. J Pediatr Gastroenterol Nutr 1992; 15: 184–8

    Article  PubMed  CAS  Google Scholar 

  48. Dohil R, Israel DM, Hassall E. Effective 2-wk therapy for Helicobacter pylori disease in children. Am J Gastroenterol 1997; 92: 244–7

    PubMed  CAS  Google Scholar 

  49. Kato S, Takeyama J, Ebina K, et al. Omeprazole-based dual and triple regimens for Helicobacter pylori eradication in children. Pediatrics 1997; 100: E3

    Article  PubMed  CAS  Google Scholar 

  50. Moshkowitz M, Reif S, Brill S, et al. One-week triple therapy with omeprazole, clarithromycin, and nitroimidazole for Helicobacter pylori infection in children and adolescents. Pediatrics 1998; 102: E14

    Article  PubMed  CAS  Google Scholar 

  51. Casswall TH, Alfven G, Drapinski M, et al. One-week treatment with omeprazole, clarithromycin, and metronidazole in children with Helicobacter pylori infection. J Pediatr Gastroenterol Nutr 1998; 27: 415–8

    Article  PubMed  CAS  Google Scholar 

  52. Tiren U, Sandstedt B, Finkel Y. Helicobacter pylori gastritis in children: efficacy of 2 weeks of treatment with clarithromycin, amoxicillin and omeprazole. Acta Paediatr 1999; 88: 166–8

    Article  PubMed  CAS  Google Scholar 

  53. Chan KL, Zhou H, Ng DK, et al. A prospective study of a one-week nonbismuth quadruple therapy for childhood Helicobacter pylori infection. J Pediatr Surg 2001; 36: 1008–11

    Article  PubMed  CAS  Google Scholar 

  54. Kato S, Ritsuno H, Ohnuma K, et al. Safety and efficacy of one-week triple therapy for eradicating Helicobacter pylori in children. Helicobacter 1998; 3: 278–82

    Article  PubMed  CAS  Google Scholar 

  55. Shashidhar H, Peters J, Lin CH, et al. A prospective trial of lansoprazole triple therapy for pediatric Helicobacter pylori infection. J Pediatr Gastroenterol Nutr 2000; 30: 276–82

    Article  PubMed  CAS  Google Scholar 

  56. Kocak N, Saltik IN, Ozen H, et al. Lansoprazole triple therapy for Turkish children with Helicobacter pylori infections [letter]. J Pediatr Gastroenterol Nutr 2001; 32: 614

    Article  PubMed  CAS  Google Scholar 

  57. Drumm B, Koletzko S, Oderda G. Helicobacter pylori infection in children: a consensus statement. European Paediatric Task Force on Helicobacter pylori. J Pediatr Gastroenterol Nutr 2000; 30: 207–13

    Article  PubMed  CAS  Google Scholar 

  58. Gold BD, Colletti RB, Abbott M, et al. Helicobacter pylori infection in children: recommendations for diagnosis and treatment. J Pediatr Gastroenterol Nutr 2000; 31: 490–7

    Article  PubMed  CAS  Google Scholar 

  59. Tran TM, Van den Neucker A, Hendriks JJ, et al. Effects of a proton-pump inhibitor in cystic fibrosis. Acta Paediatr 1998; 87: 553–8

    Article  PubMed  CAS  Google Scholar 

  60. Proesmans M, De Boeck K. Omeprazole, a proton pump inhibitor, improves residual steatorrhoea in cystic fibrosis patients treated with high dose pancreatic enzymes. Eur J Pediatr 2003; Nov; 162(11): 760–3

    Article  PubMed  CAS  Google Scholar 

  61. Francisco MP, Wagner MH, Sherman JM, et al. Ranitidine and omeprazole as adjuvant therapy to pancrelipase to improve fat absorption in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 2002; 35: 79–83

    Article  PubMed  CAS  Google Scholar 

  62. Mikawa K, Nishina K, Maekawa N, et al. Lansoprazole reduces preoperative gastric fluid acidity and volume in children. Can J Anaesth 1995; 42: 467–72

    Article  PubMed  CAS  Google Scholar 

  63. Nishina K, Mikawa K, Maekawa N, et al. Omeprazole reduces preoperative gastric fluid acidity and volume in children. Can J Anaesth 1994; 41: 925–9

    Article  PubMed  CAS  Google Scholar 

  64. Olsen KM, Bergman KL, Kaufman SS, et al. Omeprazole pharmacodynamics and gastric acid suppression in critically ill pediatric transplant patients. Pediatr Crit Care Med 2001; 2: 232–7

    Article  PubMed  Google Scholar 

  65. Kaufman SS, Lyden ER, Brown CR, et al. Omeprazole therapy in pediatric patients after liver and intestinal transplantation. J Pediatr Gastroenterol Nutr 2002; 34: 194–8

    Article  PubMed  CAS  Google Scholar 

  66. Haizlip JA, Lugo RA, Cash JJ, et al. Failure of nasogastric omeprazole suspension in pediatric intensive care patients. Pediatr Crit Care Med 2005; 6: 182–7

    Article  PubMed  Google Scholar 

  67. Howden CW. Clinical pharmacology of omeprazole. Clin Pharmacokinet 1991; 20: 38–49

    Article  PubMed  CAS  Google Scholar 

  68. Stedman CA, Barclay ML. Review article: comparison of the pharmacokinetics, acid suppression and efficacy of proton pump inhibitors. Aliment Pharmacol Ther 2000; 14: 963–78

    Article  PubMed  CAS  Google Scholar 

  69. Hussein Z, Granneman GR, Mukherjee D, et al. Age-related differences in the pharmacokinetics and pharmacodynamics of lansoprazole. Br J Clin Pharmacol 1993; 36: 391–8

    Article  PubMed  CAS  Google Scholar 

  70. Pounder RE, Sharma BK, Walt RP. Twenty-four hour intragastric acidity during treatment with oral omeprazole. Scand J Gastroenterol Suppl 1986; 118: 108–17

    Article  PubMed  CAS  Google Scholar 

  71. Chang M, Tybring G, Dahl ML, et al. Interphenotype differences in disposition and effect on gastrin levels of omeprazole: suitability of omeprazole as a probe for CYP2C19. Br J Clin Pharmacol 1995; 39: 511–8

    Article  PubMed  CAS  Google Scholar 

  72. Furuta T, Ohashi K, Kamata T, et al. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med 1998; 129: 1027–30

    PubMed  CAS  Google Scholar 

  73. Furuta T, Ohashi K, Kosuge K, et al. CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans. Clin Pharmacol Ther 1999; 65: 552–61

    Article  PubMed  CAS  Google Scholar 

  74. Aoyama N, Tanigawara Y, Kita T, et al. Sufficient effect of 1-week omeprazole and amoxicillin dual treatment for Helicobacter pylori eradication in cytochrome P450 2C19 poor metabolizers. J Gastroenterol 1999; 34 Suppl. 11: 80–3

    PubMed  CAS  Google Scholar 

  75. Tanigawara Y, Aoyama N, Kita T, et al. CYP2C19 genotyperelated efficacy of omeprazole for the treatment of infection caused by Helicobacter pylori. Clin Pharmacol Ther 1999; 66: 528–34

    Article  PubMed  CAS  Google Scholar 

  76. Sagar M, Bertilsson L, Stridsberg M, et al. Omeprazole and CYP2C19 polymorphism: effects of long-term treatment on gastrin, pepsinogen I, and chromogranin A in patients with acid related disorders. Aliment Pharmacol Ther 2000; 14: 1495–502

    Article  PubMed  CAS  Google Scholar 

  77. Tran A, Rey E, Pons G, et al. Pharmacokinetic-pharmacodynamic study of oral lansoprazole in children. Clin Pharmacol Ther 2002; 71: 359–67

    Article  PubMed  CAS  Google Scholar 

  78. Gremse D, Winter H, Tolia V, et al. Pharmacokinetics and pharmacodynamics of lansoprazole in children with gastroesophageal reflux disease. J Pediatr Gastroenterol Nutr 2002; 35 Suppl. 4: S319–26

    Article  PubMed  CAS  Google Scholar 

  79. Andersson T, Andren K, Cederberg C, et al. Effect of omeprazole and Cimetidine on plasma diazepam levels. Eur J Clin Pharmacol 1990; 39: 51–4

    Article  PubMed  CAS  Google Scholar 

  80. Tolman KG, Sanders SW, Buchi KN, et al. The effects of oral doses of lansoprazole and omeprazole on gastric pH. J Clin Gastroenterol 1997; 24: 65–70

    Article  PubMed  CAS  Google Scholar 

  81. Benet LZ, Zech Pharmacokinetics: a relevant factor for the choice of a drug? Aliment Pharmacol Ther 1994; 8 Suppl. 1: 25–32

    PubMed  Google Scholar 

  82. Blum RA. Lansoprazole and omeprazole in the treatment of acid peptic disorders. Am J Health Syst Pharm 1996; 53: 1401–15

    PubMed  CAS  Google Scholar 

  83. Andersson T. Pharmacokinetics, metabolism and interactions of acid pump inhibitors: focus on omeprazole, lansoprazole and pantoprazole. Clin Pharmacokinet 1996; 31: 9–28

    Article  PubMed  CAS  Google Scholar 

  84. Andersson T, Regardh CG, Dahl-Puustinen ML, et al. Slow omeprazole metabolizers are also poor S-mephenytoin hydroxylators. Ther Drug Monit 1990; 12: 415–6

    Article  PubMed  CAS  Google Scholar 

  85. Hartmann M, Theiss U, Huber R, et al. Twenty-four-hour intragastric pH profiles and pharmacokinetics following single and repeated oral administration of the proton pump inhibitor pantoprazole in comparison to omeprazole. Aliment Pharmacol Ther 1996; 10: 359–66

    Article  PubMed  CAS  Google Scholar 

  86. Landes BD, Petite JP, Flouvat B. Clinical pharmacokinetics of lansoprazole. Clin Pharmacokinet 1995; 28: 458–70

    Article  PubMed  CAS  Google Scholar 

  87. Spencer CM, Faulds D. Lansoprazole. A reappraisal of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy in acid-related disorders. Drugs 1994; 48: 404–30

    Article  PubMed  CAS  Google Scholar 

  88. Gerloff J, Mignot A, Barth H, et al. Pharmacokinetics and absolute bioavailability of lansoprazole. Eur J Clin Pharmacol 1996; 50: 293–7

    Article  PubMed  CAS  Google Scholar 

  89. Langtry HD, Wilde MI. Lansoprazole: an update of its pharmacological properties and clinical efficacy in the management of acid-related disorders. Drugs 1997; 54: 473–500

    Article  PubMed  CAS  Google Scholar 

  90. Parsons ME. Pantoprazole, a new proton-pump inhibitor, has a precise and predictable profile of activity. Eur J Gastroenterol Hepatol 1996; 8 Suppl. 1: S15–20

    Article  PubMed  Google Scholar 

  91. Huber R, Hartmann M, Bliesath H, et al. Pharmacokinetics of pantoprazole in man. Int J Clin Pharmacol Ther 1996; 34: S7–16

    PubMed  CAS  Google Scholar 

  92. Fitton A, Wiseman L. Pantoprazole: a review of its pharmacological properties and therapeutic use in acid-related disorders. Drugs 1996; 51: 460–82

    Article  PubMed  CAS  Google Scholar 

  93. Prakash A, Faulds D. Rabeprazole. Drugs 1998; 55: 261–7

    Article  PubMed  CAS  Google Scholar 

  94. Andersson T, Hassan-Alin M, Hasselgren G, et al. Pharmacokinetic studies with esomeprazole, the (S)-isomer of omeprazole. Clin Pharmacokinet 2001; 40: 411–26

    Article  PubMed  CAS  Google Scholar 

  95. Jacqz-Aigrain E, Bellaich M, Faure C, et al. Pharmacokinetics of intravenous omeprazole in children. Eur J Clin Pharmacol 1994; 47: 181–5

    PubMed  CAS  Google Scholar 

  96. Andersson T, Hassall E, Lundborg P, et al. Pharmacokinetics of orally administered omeprazole in children. International Pediatric Omeprazole Pharmacokinetic Group. Am J Gastroenterol 2000; 95: 3101–6

    Article  PubMed  CAS  Google Scholar 

  97. Andersson T, Anderson G, Dasen S, et al. Pharmacokinetics and pharmacodynamics of oral omeprazole in infants [abstract]. J Pediatr Gastroenterol Nutr 2001; 33: 416

    Article  Google Scholar 

  98. Andersson T, Göthberg G, Friberg L, et al. Pharmacokinetics of intravenous omeprazole in neonates and infants [abstract]. J Pediatr Gastroenterol Nutr 2001; 33: 424

    Google Scholar 

  99. Kearns GL, Andersson T, James LP, et al. Omeprazole disposition in children following single-dose administration. J Clin Pharmacol 2003; 43: 840–8

    Article  PubMed  CAS  Google Scholar 

  100. Marier JF, Dubuc MC, Drouin E, et al. Pharmacokinetics of omeprazole in healthy adults and in children with gastroesophageal reflux disease. Ther Drug Monit 2004; 26: 3–8

    Article  PubMed  CAS  Google Scholar 

  101. Kearns GL, Ferron GM, James LP, et al. Pantoprazole disposition in pediatrics [abstract PII-35]. Clin Pharmacol Ther 2003; 73: P38

    Article  Google Scholar 

  102. Ferron G, Schexnayder S, Marshall JD, et al. Pharmacokinetics of IV pantoprazole in pediatric patients [abstract PII-30]. Clin Pharmacol Ther 2003; 73: P37

    Article  Google Scholar 

  103. Litalien Theoret Y, Drouin C, et al. Reduction of IV pantoprazole metabolism in children with systemic inflammatory response syndrome (SIRS) [abstract]. J Pediatr Gastroenterol Nutr 2003; 37: 349

    Article  Google Scholar 

  104. Delhotal-Landes B, Cournot A, Vermerie N, et al. The effect of food and antacids on lansoprazole absorption and disposition. Eur J Drug Metab Pharmacokinet 1991; Spec. No. 3: 315–20

    Google Scholar 

  105. Barradell LB, Faulds D, McTavish D. Lansoprazole: a review of its pharmacodynamic and pharmacokinetic properties and its therapeutic efficacy in acid-related disorders. Drugs 1992; 44: 225–50

    Article  PubMed  CAS  Google Scholar 

  106. Prevacid (lansoprazole) product information. Lake Forest (IL): TAP Pharmaceuticals Inc., 2003

  107. Larsson H, Carlsson E, Junggren U, et al. Inhibition of gastric acid secretion by omeprazole in the dog and rat. Gastroenterology 1983; 85: 900–7

    PubMed  CAS  Google Scholar 

  108. Ferron GM, Ku S, Abell M, et al. Oral bioavailability of pantoprazole suspended in sodium bicarbonate solution. Am J Health Syst Pharm 2003; 60: 1324–9

    PubMed  CAS  Google Scholar 

  109. Andersson T, Andren K, Cederberg C et al. Pharmacokinetics and bioavailability of omeprazole after single and repeated oral administration in healthy subjects. Br J Clin Pharmacol 1990; 29: 557–63

    Article  PubMed  CAS  Google Scholar 

  110. Losec MUPS (omeprazole multiple unit pellet system) product information. Luton: AstraZeneca UK Ltd, 2004

  111. Mohiuddin MA, Pursnani KG, Katzka DA, et al. Effective gastric acid suppression after oral administration of entericcoated omeprazole granules. Dig Dis Sci 1997; 42: 715–9

    Article  PubMed  CAS  Google Scholar 

  112. Sharma VK, Peyton B, Spears T, et al. Oral pharmacokinetics of omeprazole and lansoprazole after single and repeated doses as intact capsules or as suspensions in sodium bicarbonate. Aliment Pharmacol Ther 2000; 14: 887–92

    Article  PubMed  CAS  Google Scholar 

  113. Freston JW, Chiu YL, Mulford DJ, et al. Comparative pharmacokinetics and safety of lansoprazole oral capsules and orally disintegrating tablets in healthy subjects. Aliment Pharmacol Ther 2003; 17: 361–7

    Article  PubMed  CAS  Google Scholar 

  114. Chun AH, Erdman K, Chiu YL, et al. Bioavailability of lansoprazole granules administered in juice or soft food compared with the intact capsule formulation. Clin Ther 2002; 24: 1322–31

    Article  PubMed  CAS  Google Scholar 

  115. McColl KE, Kennerley P. Proton pump inhibitors: differences emerge in hepatic metabolism. Dig Liver Dis 2002; 34: 461–7

    Article  PubMed  CAS  Google Scholar 

  116. Fuhr U, Jetter A. Rabeprazole: pharmacokinetics and pharmacokinetic drug interactions. Pharmazie 2002; 57: 595–601

    PubMed  CAS  Google Scholar 

  117. Hoyumpa AM, Trevino-Alanis H, Grimes I, et al. Rabeprazole: pharmacokinetics in patients with stable, compensated cirrhosis. Clin Ther 1999; 21: 691–701

    Article  PubMed  CAS  Google Scholar 

  118. Andersson T, Miners JO, Veronese ME, et al. Identification of human liver cytochrome P450 isoforms mediating secondary omeprazole metabolism. Br J Clin Pharmacol 1994; 37: 597–604

    Article  PubMed  CAS  Google Scholar 

  119. Meyer UA. Metabolic interactions of the proton-pump inhibitors lansoprazole, omeprazole and pantoprazole with other drugs. Eur J Gastroenterol Hepatol 1996; 8 Suppl. 1: S21–5

    Article  PubMed  Google Scholar 

  120. Chiba K, Kobayashi K, Manabe K, et al. Oxidative metabolism of omeprazole in human liver microsomes: cosegregation with S-mephenytoin 4′-hydroxylation. J Pharmacol Exp Ther 1993; 266: 52–9

    PubMed  CAS  Google Scholar 

  121. Ishizaki T, Horai Y. Review article: cytochrome P450 and the metabolism of proton pump inhibitors: emphasis on rabeprazole. Aliment Pharmacol Ther 1999; 13 Suppl. 3: 27–36

    Article  PubMed  CAS  Google Scholar 

  122. Bliesath H, Huber R, Hartmann M, et al. Dose linearity of the pharmacokinetics of the new H+/K(+)-ATPase inhibitor pantoprazole after single intravenous administration. Int J Clin Pharmacol Ther 1994; 32: 44–50

    PubMed  CAS  Google Scholar 

  123. Yasuda S, Ohnishi A, Ogawa T, et al. Pharmacokinetic properties of E3810, a new proton pump inhibitor, in healthy male volunteers. Int J Clin Pharmacol Ther 1994; 32: 466–73

    PubMed  CAS  Google Scholar 

  124. Rost KL, Roots I. Nonlinear kinetics after high-dose omeprazole caused by saturation of genetically variable CYP2C19. Hepatology 1996; 23: 1491–7

    Article  PubMed  CAS  Google Scholar 

  125. Caraco Y, Wilkinson GR, Wood AJ. Differences between white subjects and Chinese subjects in the in vivo inhibition of cytochrome P450s 2C19, 2D6, and 3by omeprazole. Clin Pharmacol Ther 1996; 60: 396–404

    Article  PubMed  CAS  Google Scholar 

  126. Ko JW, Sukhova N, Thacker D, et al. Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metab Dispos 1997; 25: 853–62

    PubMed  CAS  Google Scholar 

  127. Yu KS, Yim DS, Cho JY, et al. Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther 2001; 69: 266–73

    Article  PubMed  CAS  Google Scholar 

  128. Furuta S, Kamada E, Suzuki T, et al. Inhibition of drug metabolism in human liver microsomes by nizatidine, Cimetidine and omeprazole. Xenobiotica 2001; 31: 1–10

    Article  PubMed  CAS  Google Scholar 

  129. Hassan-Alin M, Andersson T, Bredberg E, et al. Pharmacokinetics of esomeprazole after oral and intravenous administration of single and repeated doses to healthy subjects. Eur J Clin Pharmacol 2000; 56: 665–70

    Article  PubMed  CAS  Google Scholar 

  130. Leeder JS, Kearns GL. Pharmacogenetics in pediatrics. Implications for practice. Pediatr Clin North Am 1997; 44: 55–77

    Article  PubMed  CAS  Google Scholar 

  131. de Morais SM, Wilkinson GR, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994; 269: 15419–22

    PubMed  Google Scholar 

  132. Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation: current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 1995; 29: 192–209

    Article  PubMed  CAS  Google Scholar 

  133. Andersson T, Holmberg J, Rohss K, et al. Pharmacokinetics and effect on caffeine metabolism of the proton pump inhibitors, omeprazole, lansoprazole, and pantoprazole. Br J Clin Pharmacol 1998; 45: 369–75

    Article  PubMed  CAS  Google Scholar 

  134. Yasuda S, Horai Y, Tomono Y, et al. Comparison of the kinetic disposition and metabolism of E3810, a new proton pump inhibitor, and omeprazole in relation to S-mephenytoin 4′-hydroxylation status. Clin Pharmacol Ther 1995; 58: 143–54

    Article  PubMed  CAS  Google Scholar 

  135. Sakai T, Aoyama N, Kita T, et al. CYP2C19 genotype and pharmacokinetics of three proton pump inhibitors in healthy subjects. Pharm Res 2001; 18: 721–7

    Article  PubMed  CAS  Google Scholar 

  136. Shirai N, Furuta T, Moriyama Y, et al. Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH. Aliment Pharmacol Ther 2001; 15: 1929–37

    Article  PubMed  CAS  Google Scholar 

  137. Ieiri I, Kishimoto Y, Okochi H, et al. Comparison of the kinetic disposition of and serum gastrin change by lansoprazole versus rabeprazole during an 8-day dosing scheme in relation to CYP2C19 polymorphism. Eur J Clin Pharmacol 2001; 57: 485–92

    Article  PubMed  CAS  Google Scholar 

  138. Kim KA, Shon JH, Park JY, et al. Enantioselective disposition of lansoprazole in extensive and poor metabolizers of CYP2C19. Clin Pharmacol Ther 2002; 72: 90–9

    Article  PubMed  CAS  Google Scholar 

  139. Tanaka M, Ohkubo T, Otani K, et al. Metabolic disposition of pantoprazole, a proton pump inhibitor, in relation to S-mephenytoin 4′-hydroxylation phenotype and genotype. Clin Pharmacol Ther 1997; 62: 619–28

    Article  PubMed  CAS  Google Scholar 

  140. Horai Y, Kimura M, Furuie H, et al. Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotypes. Aliment Pharmacol Ther 2001; 15: 793–803

    Article  PubMed  CAS  Google Scholar 

  141. Wacher VJ, Silverman JA, Zhang Y, et al. Role of P-glycoprotein and cytochrome P450 3in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 1998; 87: 1322–30

    Article  PubMed  CAS  Google Scholar 

  142. Pauli-Magnus Rekersbrink S, Klotz U, et al. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol 2001; 364: 551–7

    Article  PubMed  CAS  Google Scholar 

  143. Johnson TN, Tanner MS, Taylor CJ, et al. Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis. Br J Clin Pharmacol 2001; 51: 451–60

    Article  PubMed  CAS  Google Scholar 

  144. Mahmood B, Daood MJ, Hart C, et al. Ontogeny of P-glycoprotein in mouse intestine, liver, and kidney. J Investig Med 2001; 49: 250–7

    Article  PubMed  CAS  Google Scholar 

  145. Sata F, Sapone A, Elizondo G, et al. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 2000; 67: 48–56

    Article  PubMed  CAS  Google Scholar 

  146. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97: 3473–8

    Article  PubMed  CAS  Google Scholar 

  147. Andersson T, Olsson R, Regardh CG, et al. Pharmacokinetics of [14C]omeprazole in patients with liver cirrhosis. Clin Pharmacokinet 1993; 24: 71–8

    Article  PubMed  CAS  Google Scholar 

  148. Delhotal-Landes B, Flouvat Duchier J, et al. Pharmacokinetics of lansoprazole in patients with renal or liver disease of varying severity. Eur J Clin Pharmacol 1993; 45: 367–71

    Article  PubMed  CAS  Google Scholar 

  149. Ferron GM, Preston RA, Noveck RJ, et al. Pharmacokinetics of pantoprazole in patients with moderate and severe hepatic dysfunction. Clin Ther 2001; 23: 1180–92

    Article  PubMed  CAS  Google Scholar 

  150. Sjovall H, Bjornsson E, Holmberg J, et al. Pharmacokinetic study of esomeprazole in patients with hepatic impairment. Eur J Gastroenterol Hepatol 2002; 14: 491–6

    Article  PubMed  CAS  Google Scholar 

  151. Naesdal J, Andersson T, Bodemar G, et al. Pharmacokinetics of [14C]omeprazole in patients with impaired renal function. Clin Pharmacol Ther 1986; 40: 344–51

    Article  PubMed  CAS  Google Scholar 

  152. Lins RL, De Clercq I, Hartmann M, et al. Pharmacokinetics of the proton pump inhibitor pantoprazole in patients with severe renal impairment [abstract]. Gastroenterology 1994; 106: A126

    Google Scholar 

  153. Keane WF, Swan SK, Grimes I, et al. Rabeprazole: pharmacokinetics and tolerability in patients with stable, end-stage renal failure. J Clin Pharmacol 1999; 39: 927–33

    Article  PubMed  CAS  Google Scholar 

  154. Renton KW. Alteration of drug biotransformation and elimination during infection and inflammation. Pharmacol Ther 2001; 92: 147–63

    Article  PubMed  CAS  Google Scholar 

  155. Carcillo JA, Doughty L, Kofos D, et al. Cytochrome P450 mediated-drug metabolism is reduced in children with sepsis-induced multiple organ failure. Intensive Care Med 2003; 29: 980–4

    PubMed  Google Scholar 

  156. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101: 1644–55

    Article  PubMed  CAS  Google Scholar 

  157. Erlandsson P, Isaksson R, Lorentzon P, et al. Resolution of the enantiomers of omeprazole and some of its analogues by liquid chromatography on a trisphenylcarbamoylcellulose-based stationary phase: the effect of the enantiomers of omeprazole on gastric glands. J Chromatogr 1990; 532: 305–19

    Article  PubMed  CAS  Google Scholar 

  158. Nagaya H, Inatomi N, Nohara A, et al. Effects of the enantiomers of lansoprazole (AG-1749) on (H+ + K+)-ATPase activity in canine gastric microsomes and acid formation in isolated canine parietal cells. Biochem Pharmacol 1991; 42: 1875–8

    Article  PubMed  CAS  Google Scholar 

  159. Abelo A, Andersson TB, Antonsson M, et al. Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes. Drug Metab Dispos 2000; 28: 966–72

    PubMed  CAS  Google Scholar 

  160. Tybring G, Bottiger Y, Widen J, et al. Enantioselective hydroxylation of omeprazole catalyzed by CYP2C19 in Swedish white subjects. Clin Pharmacol Ther 1997; 62: 129–37

    Article  PubMed  CAS  Google Scholar 

  161. Tanaka M, Ohkubo T, Otani K, et al. Stereoselective pharmacokinetics of pantoprazole, a proton pump inhibitor, in extensive and poor metabolizers of S-mephenytoin. Clin Pharmacol Ther 2001; 69: 108–13

    Article  PubMed  CAS  Google Scholar 

  162. Andersson T. Single-isomer drugs: true therapeutic advances. Clin Pharmacokinet 2004; 43: 279–85

    Article  PubMed  CAS  Google Scholar 

  163. Mansfield P, Henry D, Tonkin A. Single-enantiomer drugs: elegant science, disappointing effects. Clin Pharmacokinet 2004; 43: 287–90

    Article  PubMed  CAS  Google Scholar 

  164. Klok RM, Postma MJ, van Hout BA, et al. Meta-analysis: comparing the efficacy of proton pump inhibitors in short-term use. Aliment Pharmacol Ther 2003; 17: 1237–45

    Article  PubMed  CAS  Google Scholar 

  165. Kim KA, Kim MJ, Park JY, et al. Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes. Drug Metab Dispos 2003; 31: 1227–34

    Article  PubMed  CAS  Google Scholar 

  166. Meyer UA. Interaction of proton pump inhibitors with cytochromes P450: consequences for drug interactions. Yale J Biol Med 1996; 69: 203–9

    PubMed  CAS  Google Scholar 

  167. Regardh CG, Andersson T, Lagerstrom PO, et al. The pharmacokinetics of omeprazole in humans: a study of single intravenous and oral doses. Ther Drug Monit 1990; 12:163–72

    Article  PubMed  CAS  Google Scholar 

  168. Caraco Y, Tateishi T, Wood AJ. Interethnic difference in omeprazole’s inhibition of diazepam metabolism. Clin Pharmacol Ther 1995; 58: 62–72

    Article  PubMed  CAS  Google Scholar 

  169. Funck-Brentano C, Becquemont L, Lenevu A, et al. Inhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. J Pharmacol Exp Ther 1997; 280: 730–8

    PubMed  CAS  Google Scholar 

  170. Prichard PJ, Walt RP, Kitchingman GK, et al. Oral phenytoin pharmacokinetics during omeprazole therapy. Br J Clin Pharmacol 1987; 24: 543–5

    Article  PubMed  CAS  Google Scholar 

  171. Gugler R, Jensen JC. Omeprazole inhibits oxidative drug metabolism: studies with diazepam and phenytoin in vivo and 7-ethoxycoumarin in vitro. Gastroenterology 1985; 89: 1235–41

    PubMed  CAS  Google Scholar 

  172. Andersson T, Lagerstrom PO, Unge P. A study of the interaction between omeprazole and phenytoin in epileptic patients. Ther Drug Monit 1990; 12: 329–33

    Article  PubMed  CAS  Google Scholar 

  173. Dixit RK, Chawla AB, Kumar N, et al. Effect of omeprazole on the pharmacokinetics of sustained-release carbamazepine in healthy male volunteers. Methods Find Exp Clin Pharmacol 2001; 23: 37–9

    Article  PubMed  CAS  Google Scholar 

  174. Soons PA, van den Berg G, Danhof M, et al. Influence of single- and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. Eur J Clin Pharmacol 1992; 42: 319–24

    Article  PubMed  CAS  Google Scholar 

  175. Nefesoglu FZ, Ayanoglu-Dulger G, Ulusoy NB, et al. Interaction of omeprazole with enteric-coated salicylate tablets. Int J Clin Pharmacol Ther 1998; 36: 549–53

    PubMed  CAS  Google Scholar 

  176. Itagaki F, Homma M, Yuzawa K, et al. Effect of lansoprazole and rabeprazole on tacrolimus pharmacokinetics in healthy volunteers with CYP2C19 mutations. J Pharm Pharmacol 2004; 56: 1055–9

    Article  PubMed  CAS  Google Scholar 

  177. Bottiger Y, Tybring G, Gotharson E, et al. Inhibition of the sulfoxidation of omeprazole by ketoconazole in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther 1997; 62: 384–91

    Article  PubMed  CAS  Google Scholar 

  178. Furuta T, Ohashi K, Kobayashi K, et al. Effects of clarithromycin on the metabolism of omeprazole in relation to CYP2C19 genotype status in humans. Clin Pharmacol Ther 1999; 66: 265–74

    Article  PubMed  CAS  Google Scholar 

  179. Andersson T, Hassan-Alin M, Hasselgren G, et al. Drug interaction studies with esomeprazole, the (S)-isomer of omeprazole. Clin Pharmacokinet 2001; 40: 523–37

    Article  PubMed  CAS  Google Scholar 

  180. Ushiama H, Echizen H, Nachi S, et al. Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial Cortisol clearance to 6β-hydroxycortisol. Clin Pharmacol Ther 2002; 72: 33–43

    Article  PubMed  CAS  Google Scholar 

  181. Oosterhuis B, Jonkman JH, Andersson T, et al. Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol 1991; 32: 569–72

    Article  PubMed  CAS  Google Scholar 

  182. Gerson LB, Triadafilopoulos G. Proton pump inhibitors and their drug interactions: an evidence-based approach. Eur J Gastroenterol Hepatol 2001; 13: 611–6

    Article  PubMed  CAS  Google Scholar 

  183. Cho JY, Yu KS, Jang IJ, et al. Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br J Clin Pharmacol 2002; 53: 393–7

    Article  PubMed  CAS  Google Scholar 

  184. Sutfin T, Balmer K, Bostrom H, et al. Stereoselective interaction of omeprazole with warfarin in healthy men. Ther Drug Monit 1989; 11: 176–84

    Article  PubMed  CAS  Google Scholar 

  185. de Hoon JN, Thijssen HH, Beysens AJ, et al. No effect of short-term omeprazole intake on acenocoumarol pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 1997; 44: 399–401

    Article  PubMed  Google Scholar 

  186. Kokufu T, Ihara N, Sugioka N, et al. Effects of lansoprazole on pharmacokinetics and metabolism of theophylline. Eur J Clin Pharmacol 1995; 48: 391–5

    Article  PubMed  CAS  Google Scholar 

  187. Granneman GR, Karol MD, Locke CS, et al. Pharmacokinetic interaction between lansoprazole and theophylline. Ther Drug Monit 1995; 17: 460–4

    Article  PubMed  CAS  Google Scholar 

  188. Dilger K, Zheng Z, Klotz U. Lack of drug interaction between omeprazole, lansoprazole, pantoprazole and theophylline. Br J Clin Pharmacol 1999; 48: 438–44

    Article  PubMed  CAS  Google Scholar 

  189. Ko JW, Jang IJ, Shin JG, et al. Theophylline pharmacokinetics are not altered by lansoprazole in CYP2C19 poor metabolizers. Clin Pharmacol Ther 1999; 65: 606–14

    Article  PubMed  CAS  Google Scholar 

  190. Rost KL, Roots I. Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther 1994; 55: 402–11

    Article  PubMed  CAS  Google Scholar 

  191. Phillips JO, Metzler MH, Palmieri MT, et al. A prospective study of simplified omeprazole suspension for the prophylaxis of stress-related mucosal damage. Crit Care Med 1996; 24: 1793–800

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Catherine Litalien is the recipient of a Clinical Research Grant from the Fondation de l’Hôpital Ste-Justine.

Dr Christophe Faure was the principal investigator in a study on intravenous omeprazole in children (sponsored by Astra-Zeneca) and another study on lansoprazole in children (sponsored by Takeda).

The skillful graphic assistance of M. Leduc is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Faure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litalien, C., Théorêt, Y. & Faure, C. Pharmacokinetics of Proton Pump Inhibitors in Children. Clin Pharmacokinet 44, 441–466 (2005). https://doi.org/10.2165/00003088-200544050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544050-00001

Keywords

Navigation