Skip to main content
Log in

Genetically Determined Variability in Acetylation and Oxidation

Therapeutic Implications

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

The clinical significance of two separate genetic polymorphisms which alter drug metabolism, acetylation and oxidation is discussed, and methods of phenotyping for both acetylator and polymorphic oxidation status are reviewed. Particular reference is made to the dapsone method, which provides a simple means of distinguishing fast and slow — and possibly intermediate — acetylators, and to the sparteine method which allows a clear separation of oxidation phenotypes.

Although acetylation polymorphism has been known for some time, definite indications for phenotyping are few. It is doubtful whether acetylator phenotype makes a significant difference to the outcome in most isoniazid treatment regimens, and peripheral neuropathy from isoniazid in slow acetylators is easily overcome by pyridoxine administration. However, in comparison with rapid acetylators, slow acetylators receiving isoniazid have an increased susceptibility to Phenytoin toxicity, and perhaps also to carbamazepine toxicity. It is also possible that rapid acetylators receiving isoniazid attain higher serum fluoride concentrations from enflurane and similar anaesthetics than do similarly treated slow acetylators. Thus, when drug interactions of these types are suspected, phenotyping for acetylator status may be advisable.

If routine monitoring of serum procainamide and N-acetylprocainamide concentrations is practised, phenotyping of subjects prior to therapy with these agents should not be necessary. Although acetylator phenotype influences serum concentrations of hydralazine, when this drug is given in combination with other drugs acetylator phenotype has not been shown to influence the therapeutic response. Slow acetylator phenotype along with female gender and the presence of HLA-DR antigens appear to be risk factors in the development of hydralazine-induced systemic lupus erythematosus (SLE). Determination of acetylator phenotype may therefore help determine susceptibility to this adverse reaction. In the case of sulphasalazine, adult slow acetylators require a lower daily dose of the drug than fast acetylators in order to maintain ulcerative colitis in remission without significant side effects. It is therefore advisable to determine acetylator phenotype prior to sulphasalazine therapy.

Work on the association of acetylation polymorphism with various disease states is also reviewed. It is possible that a higher incidence of bladder cancer is associated with slow acetylation phenotype — especially in individuals exposed to high levels of arylamines. The question as to whether idiopathic SLE is more common in slow acetylators remains unresolved. There appears to be no difference between fast and slow acetylators in susceptibility to generalised rheumatoid arthritis, but slow acetylators may be more common amongst rheumatoid arthritis patients with Sjögren’s syndrome than amongst rheumatoid patients without this syndrome. An excess of slow acetylators has been noted in patients with Gilbert’s syndrome, but the clinical significance of this is uncertain.

Polymorphic oxidation, characterised by the impaired ability of between 5 and 10% of the population to oxidise debrisoquine or sparteine, has been known for a much shorter time than has polymorphic acetylation, and work on the clinical significance of this polymorphism is far from complete. A number of β-adrenoceptor blocking drugs, e.g. metoprolol, have been shown to share the same oxidation pathway as debrisoquine and sparteine, but so far this has not been demonstrated to be of clinical importance. However, the incidence of peripheral neuropathy after perhexiline has been shown to be significantly increased in poor oxidisers. Determination of oxidation status prior to use of this drug could help to determine dosage and to control its neurotoxicity.

The kinetics of certain tricyclic antidepressants, including nortriptyline and desipramine, are related to oxidation status but the full clinical significance of this is not known. The oxidation of Phenytoin is only partly affected by the form of cytochrome P-450 involved in sparteine and debrisoquine oxidation. As measurement of Phenytoin blood concentrations provides a guide to dosage, phenotyping with debrisoquine or sparteine is not justified.

Encainide requires oxidation in the body for it to have significant antiarrhythmic activity, and reduced activity in poor oxidisers of debrisoquine has been noted. Prior phenotyping for oxidation status may therefore be advisable before treatment with this drug. Several other drugs, not now widely used clinically, have also been shown to share the debrisoquine/sparteine oxidation pathway (e.g. guanoxan, phenacetin, metiamide, phenformin, and methoxyamphetamine) and this has implications with regard to the toxicity of these drugs.

Genetic polymorphisms in drug metabolism should be allowed for in the development and monitoring of new drugs. Other oxidation pathways not associated with debrisoquine or sparteine (such as that of tolbutamide, mephenytoin and S-carboxymethyl-L-cysteine) may also involve genetic polymorphisms. Clinicians and others in the health-care team, when confronted with an adverse drug reaction, should bear in mind the possible influence of genetic polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adam, A.M.; Thagers, H.J.; Amiel, S.A. and Thubers, W.: The effect of acetylator phenotype on the disposition of amino-glutethimide. British Journal of Clinical Pharmacology 18: 495–505 (1984).

    PubMed  CAS  Google Scholar 

  • Ahmad, R.A. and Rogers, H.B.: Plasma and salivary pharmacokinetics of dapsone estimated by a thin layer chromatographic method. European Journal of Clinical Pharmacology 17: 129–133 (1980).

    PubMed  CAS  Google Scholar 

  • Ahmad, R.A.; Rogers, H.J.; Vandenburg, M. and Wright, P.: Effects of concurrent administration of other substrates of N-acetyltransferase on dapsone acetylation. British Journal of Clinical Pharmacology 12: 83–86 (1981).

    PubMed  CAS  Google Scholar 

  • Alarçon-Segovia, D.: Drug-induced antinuclear antibodies and lupus syndromes. Drugs 12: 69–77 (1976).

    PubMed  Google Scholar 

  • Alarçon-Segovia, D.; Fishbein, E. and Alcola, H.: Isoniazid acetylation rate and development of antinuclear antibodies upon isoniazid treatment. Arthritis and Rheumatism 14: 748–752 (1971).

    PubMed  Google Scholar 

  • Alvan, G.; von Bahr, C; Seideman, P. and Sjöqvist, F.: High plasma concentrations of β-receptor blocking drugs and deficient debrisoquine hydroxylation. Lancet 1: 333 (1982).

    PubMed  CAS  Google Scholar 

  • Andoh, B.; Idle, J.R.; Sloan, T.P.; Smith, R.L. and Woolhouse, N.: Inter-ethnic and inter-phenotype differences amongst Ghanaians and Caucasians in the metabolic hydroxylation of Phenytoin. British Journal of Clinical Pharmacology 9: 282P–283P (1980).

    PubMed  CAS  Google Scholar 

  • Arunkumar Shastri, R.: Undernourished adults and acetylation phenotype. International Journal of Clinical Pharmacology, Therapeutics and Toxicology 20: 194–196 (1982).

    CAS  Google Scholar 

  • Azad Khan, A.K.; Nurazzaman, M. and Truelove, S.C.: The effect of the acetylator phenotype on the metabolism of suphasalazine in man. Journal of Medical Genetics 20: 30–36 (1983).

    PubMed  CAS  Google Scholar 

  • Balant-Gorgia, A.E.; Schulz, P.; Dayer, P.; Balant, L.; Kubli, A.; Gertsch, C. and Garrone, G.: Role of oxidation polymorphism on blood and urine concentrations of amitriptyline and its metabolites in man. Archives of Psychiatry and Neurological Sciences 232: 215–222 (1982).

    PubMed  CAS  Google Scholar 

  • Batchelor, J.R.; Welsh, K.I.; Mansilla-Tinoco, R.; Dollery, C.T.; Hughes, G.R.V.; Bernstein, R.; Ryan, P.; Naish, P.F.; Abler, G.M.; Bing, R.F. and Russell, G.I.: Hydralazine-induced systemic lupus erythematosus: Influence of HLA-DR and sex on susceptibility. Lancet 1: 1107–1109 (1980).

    PubMed  CAS  Google Scholar 

  • Bertilsson, L. and Aberg-Wistedt, A.: The debrisoquine hydroxylation test predicts steady-state plasma levels of desipramine. British Journal of Clinical Pharmacology 15: 388–390 (1983).

    PubMed  CAS  Google Scholar 

  • Bertilsson, L.; Dengler, H.J.; Eichelbaum, M. and Schulz, H.-U.: Pharmacogenetic covariation of defective N-oxidation of sparteine and 4-hydroxylation of debrisoquine. European Journal of Clinical Pharmacology 17: 153–155 (1980).

    PubMed  CAS  Google Scholar 

  • Bertilsson, L.; Eichelbaum, M.; Mellström, B.; Säwe, J.; Schulz, H-U. and Sjöqvist, F.: Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sciences 27: 1673–1677 (1980).

    PubMed  CAS  Google Scholar 

  • Blain, P.G.; Mucklow, J.C.; Wood, P.; Roberts, D.F. and Rawlins, M.D.: Family study of antipyrine clearance. British Medical Journal 284: 150–152 (1982).

    PubMed  CAS  Google Scholar 

  • Bodansky, H.J.; Drury, P.L.; Cudworth, A.G. and Price Evans, D.A.: Acetylator phenotypes and type 1 (insulin-dependent) diabetics with microvascular disease. Diabetes 30: 907–910 (1981).

    PubMed  CAS  Google Scholar 

  • Bogers, W.A. and Meems, J.L.: Endralazine, a new peripheral vasodilator. Evaluation of safety and efficacy over a three year period. European Journal of Clinical Pharmacology 24: 301–305 (1983).

    PubMed  CAS  Google Scholar 

  • Boobis, A.R.; Murray, S.; Khan, G.C.; Robertz, G-M. and Davies, D.S.: Substrate specificity of the form of cytochrome P-450 catalyzing the 4-hydroxylation of debrisoquine in man. Molecular Pharmacology 23: 471–481 (1983).

    Google Scholar 

  • Breimer, D.D.: Interindividual variations in drug disposition: Clinical implications and methods of investigation. Clinical Pharmacokinetics 8: 371–377 (1983).

    PubMed  CAS  Google Scholar 

  • Bulovskaya, L.N.; Krupkin, R.G.; Bochina, T.A.; Shipkova, A.A. and Pavlova, M.V.: Acetylator phenotype in patients with breast cancer. Oncology 35: 185–188 (1978).

    PubMed  CAS  Google Scholar 

  • Burrows, A.W.; Hockaday, T.D.R.; Mann, J.I. and Taylor, J.G.: Diabetic dimorphism according to acetylator status. British Medical Journal 1: 208–210 (1978).

    PubMed  CAS  Google Scholar 

  • Carr, K.; Oates, J.A.; Nies, A.S. and Woosley, R.L.: Simultaneous analysis of dapsone and monoacetyldapsone employing high performance liquid chromatography: A rapid method for determination of acetylator phenotype. British Journal of Clinical Pharmacology 6: 421–427 (1978).

    PubMed  CAS  Google Scholar 

  • Cartwright, R.A.; Glashen, R.W.; Rogers, H.J.; Ahmad, R.A.; Barham-Hall, D.; Higgins, E. and Kahn, M.A.: Role of N-acetyltransferase phenotypes in bladder carcinogenesis: A pharmacogenetic epidemiological approach to bladder cancer. Lancet 2: 842–845 (1982).

    PubMed  CAS  Google Scholar 

  • Chapman, C.J.: Drugs and genes: Therapeutic implications. Drugs 14: 120–127 (1977).

    PubMed  CAS  Google Scholar 

  • Chapron, D.J. and Blum, M.R.; Relationship of sulphamethazine disposition kinetics to acetylator phenotype in man. Journal of Clinical Pharmacology 16: 338–344 (1976).

    PubMed  CAS  Google Scholar 

  • Chapron, D.J.; Blum, M.R. and Kramer, P.A.: Evidence for a trimodal pattern of acetylation isoniazid in uraemic subjects. Journal of Pharmacological Sciences 67: 1018–1019 (1978).

    CAS  Google Scholar 

  • Chapron, D.J.; Kramer, P.A. and Mercik, S.A.: Kinetic discrimination of three sulphamethazine acetylation phenotypes. Clinical Pharmacology and Therapeutics 27: 104–113 (1980).

    PubMed  CAS  Google Scholar 

  • Chapron, D.J.; Kramer, P.A. and Mercik, S.A.: Potential influence of body weight on the clearance of polymorphically acetylated drugs. Journal of Clinical Pharmacology 22: 271–275 (1982).

    PubMed  CAS  Google Scholar 

  • Clark, D.W.J.: Simultaneous phenotyping for oxidation and acetylation status. Proceedings of the University of Otago Medical School, Dunedin, NZ 61: 30–32 (1983).

    Google Scholar 

  • Clark, D.W.J.; Blain, P.G.; Rawlins, M.D. and Roberts, D.H.: Pharmacogenetic screening in the general population. (Abstract.) Clinical and Experimental Pharmacology and Physiology Suppl. 8: 67 (1984a).

    Google Scholar 

  • Clark, D.W.J.; Morgan, A. and Waal-Manning, H.: Adverse effects from metoprolol are not generally associated with oxidation status. British Journal of Clinical Pharmacology (In press, 1984b).

    Google Scholar 

  • Coombes, R.C; Foster, A.B.; Harland, S.J.; Jarman, M. and Nice, E.C.: Polymorphically acetylated aminoglutethimide in humans. British Journal of Cancer 46: 340–345 (1982).

    PubMed  CAS  Google Scholar 

  • Cooper, R.G.; Price Evans, D.A. and Whibley, E.J.: Polymorphic hydroxylalion of perhexiline maleate in man. Journal of Medical Genetics 21: 27–33 (1984).

    PubMed  CAS  Google Scholar 

  • Cowan, G.O.; Das, K.M. and Eastwood, M.A.: Further studies of sulphasalizine metabolism in the treatment of ulcerative colitis. British Medical Journal 2: 1057–1059 (1977).

    PubMed  CAS  Google Scholar 

  • Danhof, M.; de Groot-van der Vis, E. and Breimer, D.D.: Assay of antipyrine and its primary metabolites in plasma, saliva and urine by high-performance liquid chromatography with some preliminary results in man. Pharmacology 18: 210–223 (1979).

    PubMed  CAS  Google Scholar 

  • Danhof, M.; Idle, J.R.; Teunissen, N.W.E.; Sloan, T.P.; Breimer, D.D. and Smith, R.L.: Influence of the genetically controlled deficiency in debrisoquine hydroxylation on antipyrine metabolite formation. Pharmacology 22: 349–358 (1981).

    PubMed  CAS  Google Scholar 

  • Das, K.M.; Eastwood, M.A.; McManus, J.P.A. and Sircus, W.: The metabolism of salicylazosulphapyridine in ulcerative colitis. Gut 14: 631–641 (1973).

    PubMed  CAS  Google Scholar 

  • Davidson, J.; McLeod, N.N. and Blum, M.R.: Acetylation phenotype, platelet monoamine oxidase inhibition, and the effectiveness of phenelzine in depression. American Journal of Psychiatry 135: 467–469 (1978).

    PubMed  CAS  Google Scholar 

  • Davies, D.S.; Beedie, M.A. and Rawlins, M.D.: Antinuclear antibodies during procainamide treatment and drug acetylation. British Medical Journal 3: 682–683 (1975).

    PubMed  CAS  Google Scholar 

  • Davies, D.S. and Boobis, A.R.: Variants of human microsomal enzymes. Biochemical Society Transactions II: 459–460 (1983).

    Google Scholar 

  • Dayer, P.; Balant, L.; Küpfer, A.; Courvoisier, F. and Fabre, J.: Contribution of the genetic status of oxidative metabolism to variability in the plasma concentrations of beta-adrenoceptor blocking agents. European Journal of Clinical Pharmacology 24: 797–799 (1983).

    PubMed  CAS  Google Scholar 

  • Dayer, P.; Courvoisier, F.; Balant, L. and Fabre, J.: Beta-blockers and drug oxidation status. Lancet 1: 509 (1982).

    Google Scholar 

  • Devadatta, S.; Gangadharan, P.R.J.; Andrews, R.H.; Fox, W.; Ramakrishnan, C.V.; Selhon, J.B. and Veru, S.: Peripheral neuritis due to isoniazid. Bulletin of the World Health Organization 23: 587–598 (1960).

    PubMed  CAS  Google Scholar 

  • de Wolff, F.A.; Vermeij, P.; Ferrari, M.D.; Buruma, O.J.S. and Breimer, D.D.: Impairment of Phenytoin parahydroxylation as a cause of severe intoxication. Therapeutic Drug Monitoring 5: 213–215 (1983).

    PubMed  Google Scholar 

  • Dickinson, D.S.; Bailey, W.C.; Hirschowitz, D.I.; Soong, S-J.; Eidus, L. and Hodgkin, M.M.: Risk factors for isoniazid (INH)-induced liver dysfunction. Journal of Clinical Gastroenterology 3: 271–279 (1981).

    PubMed  CAS  Google Scholar 

  • Drayer, D.E. and Reidenberg, M.M.: Clinical consequences of polymorphic acetylation of basic drugs. Clinical Pharmacology and Therapeutics 22: 251–258 (1977).

    PubMed  CAS  Google Scholar 

  • Drayer, D.E.; Reidenberg, M.M. and Sevy, R.W.: N-acetylprocainamide: An active metabolite of procainamide. Proceedings of the Society for Experimental Biology and Medicine 146: 358–363 (1974).

    PubMed  CAS  Google Scholar 

  • du Souich, P.; Lalka, D.; Slaughter, R.; Elvin, A.T. and McLean, A.J.: Mechanisms of non-linear disposition kinetics of sulphamethazine. Clinical Pharmacology and Therapeutics 25: 172–183 (1979b).

    PubMed  Google Scholar 

  • du Souich, P.; McLean, A.J.; Stoeckel, K.; Ohlendorf, D. and Gibaldi, M.: Screening methods using sulphamethazine for determining acetylator phenotype. Clinical Pharmacology and Therapeutics 26: 757–765 (1979a).

    PubMed  Google Scholar 

  • Ehrenfeld, N.; Zylber-Katz, E. and Levy, M.: Acetylator phenotype in rheumatoid arthritis. Israel Journal of Medical Science 19: 368–379 (1983).

    CAS  Google Scholar 

  • Eichelbaum, M.: Defective oxidation of drugs: Pharmacokinetic and therapeutic implications. Clinical Pharmacokinetics 7: 1–22 (1982).

    PubMed  CAS  Google Scholar 

  • Eichelbaum, M.; Bertilsson, L. and Säwe, J.: Antipyrine metabolism in relation to polymorphic oxidations of sparteine and debrisoquine. British Journal of Clinical Pharmacology 15: 317–321 (1983).

    PubMed  CAS  Google Scholar 

  • Eichelbaum, M.; Bertilsson, L.; Säwe, J. and Zekorn, C: Polymorphic oxidation of sparteine and debrisoquine: Related pharmacogenetic entities. Clinical Pharmacology and Therapeutic 31: 184–186 (1982).

    CAS  Google Scholar 

  • Eichelbaum, M.; Spannbrucker, N. and Dengler, H.J.: Lack of N-oxidation of sparteine in certain healthy subjects. Sixth International Congress of Pharmacology, Helsinki, July 20–25, 1971 (Sanomaprint, Helsinki 1975).

    Google Scholar 

  • Eichelbaum, M.; Spannbrucker, N.; Steincke, B. and Dengler, H.J.: Defective N-oxidation of sparteine in man: A new pharmacogenetic defect. European Journal of Clinical Pharmacology 16: 183–187 (1979).

    PubMed  CAS  Google Scholar 

  • Ellard, G.A.: Variations between individuals and populations in the acetylation of isoniazid and its significance for the treatment of pulmonary tuberculosis. Clinical Pharmacology and Therapeutics 19: 610–625 (1976).

    PubMed  CAS  Google Scholar 

  • Ellard, G.A. and Gammon, P.T.: Acetylator phenotyping of tuberculosis patients using matrix isoniazid or sulphadimidine and its prognostic significance for treatment with several intermittent isoniazid-containing regimens. British Journal of Clinical Pharmacology 4: 5–14 (1977).

    PubMed  CAS  Google Scholar 

  • Ellard, G.A.; Mitchison, D.A.; Girling, D.J.; Nunn, A.J. and Fox, W.: The hepatic toxicity of isoniazid in rapid and slow acetylators of the drug. American Review of Respiratory Disease 118: 628–629 (1978).

    PubMed  CAS  Google Scholar 

  • Elson, J.; Strong, J.M. and Atkinson Jr, A.J.: Antiarrythmic potency of N-acetylprocainamide. Clinical Pharmacology and Therapeutics 17: 134–140 (1975).

    PubMed  CAS  Google Scholar 

  • Erdtmansky, P. and Goehl, T.J.: Gas-liquid chromatographic electron capture determination of some monosubstituted guanido-containing drugs. Analytical Chemistry 47: 750–752 (1975).

    PubMed  CAS  Google Scholar 

  • Farah, F.; Taylor, W.; Rawlins, M.D. and James, O.: Hepatic drug acetylation and oxidation: Effects of ageing in man. British Medical Journal 2: 155–156 (1977).

    PubMed  CAS  Google Scholar 

  • Fine, A. and Sumner, D.J.: Determination of acetylator status in uraemia. British Journal of Clinical Pharmacology 2: 475–476 (1975).

    PubMed  CAS  Google Scholar 

  • Fish, M.P. and Rice, S.A.: Isoniazid metabolites and anaesthetic metabolism. Anesthesiology 51: S256 (1979).

    Google Scholar 

  • Fishbein, E. and Alarçon-Segovia, D.: Slow acetylation phenotype in systemic lupus erythematosus. Arthritis and Rheumatism 22: 95–96 (1979).

    PubMed  CAS  Google Scholar 

  • Foad, B.; Litwin, A.; Zimmer, H. and Hess, E.V.: Acetylator phenotype in systemic lupus erythematosus. Arthritis and Rheumatism 20: 815–818 (1977).

    PubMed  CAS  Google Scholar 

  • Freestone, S.; Silas, J.H.; Lennard, M.S. and Ramsay, L.E.: Comparison of two long-acting preparations of metoprolol with conventional metoprolol and atenolol in healthy men during chronic dosing. British Journal of Clinical Pharmacology 14: 713–718 (1982).

    PubMed  CAS  Google Scholar 

  • Gelber, R.; Peters, J.H.; Gordon, G.R.; Glazko, A.J. and Levy, L.: The polymorphic acetylation of dapsone in man. Clinical Pharmacology and Therapeutics 12: 225–238 (1971).

    PubMed  CAS  Google Scholar 

  • Girling, D.J.: The hepatic toxicity of antitubercular regimes containing isoniazid, rifampicin and pyrazimimide. Tubercle 59: 13–32 (1978).

    PubMed  CAS  Google Scholar 

  • Glowinski, I.B.; Radtke, H.E. and Weber, W.W.: Genetic variation in N-acetylation of carcinogenic arylamines by human and rabbit liver. Molecular Pharmacology 14: 940–949 (1978).

    PubMed  CAS  Google Scholar 

  • Goldstein, P.D.; Alpers, D.H. and Keating, J.T.: Sulphapyridine metabolites in children with inflammatory bowel disease receiving sulphasalazine. Journal of Pediatrics 95: 638–640 (1979).

    PubMed  CAS  Google Scholar 

  • Grant, D.M.; Tang, B.K. and Kalow, W.: Polymorphic N-acetylation of a caffeine metabolite. Clinical Pharmacology and Therapeutics 33: 355–359 (1983a).

    PubMed  CAS  Google Scholar 

  • Grant, D.M.; Tang, B.K. and Kalow, W.: Variability in caffeine metabolism. Clinical Pharmacology and Therapeutics 33: 591–602 (1983b).

    PubMed  CAS  Google Scholar 

  • Grant, D.M.; Tang, B.K. and Kalow, W.: A simple test for acetylator phenotype using caffeine. British Journal of Clinical Pharmacology 17: 459–464 (1984).

    PubMed  CAS  Google Scholar 

  • Gronhagen-Riska, C; Helstrom, P.E. and Froseth, B.: Pre-disposing factors in hepatitis induced by isoniazid-refampicin treatment of tuberculosis. American Review of Respiratory Disease 118: 461–466 (1978).

    PubMed  CAS  Google Scholar 

  • Hall, S.: Evaluation of the sulphadimidine acetylator phenotyping test in patients with reduced renal function. Acta Medica Scandinavica 209: 505–507 (1981).

    PubMed  CAS  Google Scholar 

  • Halmekoski, J.; Matila, M.J. and Mustakallio, K.K.: Metabolism and haemolytic effect of dapsone and its melabolisers in man. Medical Biology 56: 216–221 (1978).

    PubMed  CAS  Google Scholar 

  • Hanson, A.; Melander, A. and Wahlin-Boll, E.: Acetylator phenotyping: A comparison of the isoniazid and dapsone tests. European Journal of Clinical Pharmacology 20: 233–234 (1981).

    PubMed  CAS  Google Scholar 

  • Harland, S.J.; Facchini, V. and Timbrell, J.A.: Hydrallazine-induced lupus erythematosus-like syndrome in a patient of the rapid acetylator phenotype. British Medical Journal 281: 273–274 (1980).

    PubMed  CAS  Google Scholar 

  • Holmes, D.G.; Bogers, W.A.J.L.; Wideroe, T.-G.; Huunan-Seppala, A. and Wideroe, B.: Endralazine, a new peripheral vasodilator: Absence of effect of acetylator status on antihypertensive effect. Lancet 1: 670–671 (1983).

    PubMed  CAS  Google Scholar 

  • Horai, Y.; Ishizaki, T.; Sasaki, T.; Koya, G.; Matsuyama, K. and Iguchi, S.: Isoniazid disposition, comparison of isoniazid phenotyping methods in and acetylator distribution of Japanese patients with idiopathic systemic lupus erythematosus and control subjects. British Journal of Clinical Pharmacology 13: 361–374 (1982).

    PubMed  CAS  Google Scholar 

  • Hunyor, S.N.: Hydrallazine and beta-blockade in refractory hypertension with characterisation of the acetylator phenotype. Australian and New Zealand Journal of Medicine 5: 530–536 (1975).

    PubMed  CAS  Google Scholar 

  • Hutchinson, D. and Wyld, P.J.: Sulphasalazine-induced agranulocytosis. New Zealand Medical Journal 96: 520–521 (1983).

    PubMed  CAS  Google Scholar 

  • Idle, J.R.; Mahgoub, A.; Lancaster, R. and Smith, R.L.: Hypotensive response to debrisoquine and hydroxylation phenotype. Life Sciences 22: 979–984 (1978).

    PubMed  CAS  Google Scholar 

  • Idle, J.R.; Mahgoub, A.; Sloan, T.P.; Smith, R.L.; Mbanefo, C.O. and Bababunmi, E.A.: Some observations on the oxidation phenotype status of Nigerian patients presenting with cancer. Cancer Letters 11: 311–338 (1981a).

    Google Scholar 

  • Idle, J.R.; Oates, N.S.; Shah, R.R. and Smith, R.L.: Is there a genetic predisposition to phenformin-induced lactic acidosis? British Journal of Clinical Pharmacology 11: 418–419P (1981b).

    Google Scholar 

  • Idle, J.R.; Oates, N.S.; Shah, R.R. and Smith, R.L.: Protecting poor metabolisers: a group at risk of adverse reactions. Lancet 1: 1388 (1983).

    PubMed  CAS  Google Scholar 

  • Idle, J.R.; Ritchie, J.C and Smith, R.L: Oxidation phenotype and metiamide metabolism. British Journal of Pharmacology 66: 432P (1979).

    PubMed  CAS  Google Scholar 

  • Idle, J.R.; Sloan, T.P.; Smith, R.L and Wakile, L.A.: Application of the phenotyped panel approach to the detection of polymorphism of drug oxidation in man. British Journal of Pharmacology 66: 430P–431P (1980).

    Google Scholar 

  • Inaba, T.; Lucassen, M. and Kalow, W.: Antipyrine metabolism in the rat by three hepatic monooxygenases. Life Sciences 26: 1977–1983 (1980a).

    PubMed  CAS  Google Scholar 

  • Inaba, T.; Otton, S.V. and Kalow, W.: Deficient metabolism of debrisoquine and sparteine. Clinical Pharmacology and Therapeutics 27: 547–549 (1980b).

    PubMed  CAS  Google Scholar 

  • Inaba, T.; Otton, S.V. and Kalow, W.: Debrisoquine hydroxylation capacity: Problems of assessment in two populations. Clinical Pharmacology and Therapeutics 29: 218–223 (1981).

    PubMed  CAS  Google Scholar 

  • Inaba, T.; Vinks, A.; Otton, S.W. and Kalow, W.: Comparative pharmacogenetics of sparteine and debrisoquine. Clinical Pharmacology and Therapeutics 33: 394–399 (1983).

    PubMed  CAS  Google Scholar 

  • Ishizaki, T.; Horai, Y.; Koya, G.; Matsuyama, K. and Iguchi, S.: Acetylator phenotype and metabolic disposition of isoniazid in Japanese patients with systemic lupus erythematosus. Arthritis and Rheumatism 24: 1245–1254 (1981).

    PubMed  CAS  Google Scholar 

  • Islam, S.I.; Idle, J.R. and Smith, R.L: The polymorphic 4-hydroxylation of debrisoquine in a Saudi Arab population. Xe-nobiotica 10: 819–825 (1980).

    CAS  Google Scholar 

  • Jack, D.B. and Kendall, M.J.: Beta-blockers and debrisoquine metaboliser status. Lancet 1: 741 (1982).

    PubMed  CAS  Google Scholar 

  • Jack, D.B.; Wilkins, N. and Quarterman, C.P.: Lack of evidence for polymorphism in metoprolol metabolism. British Journal of Clinical Pharmacology 16: 188–190 (1983).

    PubMed  CAS  Google Scholar 

  • Johansson, E.; Mustakallio, K.K. and Mattila, M.J.: Polymorphic acetylator phenotype and systemic lupus erythematosus. Acta Medica Scandinavica 210: 193–196 (1981).

    PubMed  CAS  Google Scholar 

  • Johnstone, E.C and Marsh, W.: The relationship between response to phenelzine and acetylator status in depressed patients. Preceedings of the Royal Society of Medicine 66: 947–949 (1973).

    CAS  Google Scholar 

  • Jounela, A.J.; Pasanen, M. and Matilla, M.J.: Acetylator phenotype and the antihypertensive response tohydralazine. Acta Medica Scandinavica 197: 303–306 (1975).

    PubMed  CAS  Google Scholar 

  • Jurima, M.; Inaba, T. and Kalow, W.: Sparteine oxidation by the human liver: Absence of inhibition by mephenytoin. Clinical Pharmacology and Therapeutics 35: 426–428 (1984).

    PubMed  CAS  Google Scholar 

  • Kahl, G.C.; Boobis, A.R.; Murray, S.; Brodie, M.J. and Davies, D.S.: Assay and characterisation of debrisoquine 4-hydroxyl-ase activity of microsomal fractions of human liver. British Journal of Clinical Pharmacology 13: 637–645 (1982).

    Google Scholar 

  • Kalow, W.: Pharmacogenetics: Heredity and the Response to Drugs (W.B. Saunders, Philadephia 1962).

    Google Scholar 

  • Kalow, W.: Topics in pharmacogenetics. Annals of the New York Academy of Sciences 179: 654–659 (1971).

    PubMed  CAS  Google Scholar 

  • Kalow, W.: Ethnic differences in drug metabolism. Clinical Pharmacokinetics 7: 373–400 (1982).

    PubMed  CAS  Google Scholar 

  • Karim, A.K.M.B. and Price Evans, D.A.: Polymorphic acetylation of nitrazepam. Journal of Medical Genetics 13: 17–19 (1976).

    PubMed  CAS  Google Scholar 

  • Kellerman, G.; Kellerman, M.L.; Horning, M.G. and Stafford, M.: Elimination of antipyrine and benzo(a)pyrene metabolism in cultured human lymphocytes. Clinical Pharmacology and Therapeutics 20: 72–80 (1976).

    Google Scholar 

  • Kilchin, I.; Tremblay, J.; André, J.; Dring, L.G.; Idle, J.R.; Smith, R.L. and Williams, R.T.: Individual and interspecies interaction in the metabolism of the hallucinogen 4-methoxyamphetamine. Xenobiotica 9: 397–404 (1979).

    Google Scholar 

  • Kong, I.; Devonshire, H.W.; Cooper, M.; Sloan, T.P.; Idle, J.R. and Smith, R.L.: The influence of oxidation phenotype on phenacetin metabolism and haemotoxicity. British Journal of Clinical Pharmacology 13: 275P–276P (1982).

    CAS  Google Scholar 

  • Kupfer, A.; Desmond, P.; Schenker, S. and Branch, R.: Family study of genetically determined deficiency of mephenytoin hydroxylation in man. Pharmacologist 21: 173 (1979).

    Google Scholar 

  • Kupfer, A.; Dick, B. and Preisig, R.: Polymorphic mephenytoin hydroxylation in man: A new phenotype in the genetic control of hepatic drug metabolism. Hepatology 81: 34 (1981).

    Google Scholar 

  • Kupfer, A.; Schmid, B.; Preisig, R. and Pfaff, G.: Dextromethorphan as a safe probe for debrisoquine hydroxylation polymorphism. Lancet 2: 517–518 (1984).

    PubMed  CAS  Google Scholar 

  • Kutt, H.: Biochemical and genetic factors regulating Dilantin metabolism in man. Annals of the New York Academy of Sciences 179: 704–722 (1971).

    CAS  Google Scholar 

  • Kutt, H.; Brennan, R.; Dehejia, H. and Verebely, K.: Dipheny-lhydantoin intoxication. A complication of isoniazid therapy. American Review of Respiratory Disease 101: 377–384 (1970).

    PubMed  CAS  Google Scholar 

  • Kutt, H.; Wolk, M.; Scherman, R. and McDowell, F.: Insufficient co-hydroxylation as a cause of dipenylhydantoin toxicity. Neurology 14: 542–548 (1964).

    PubMed  CAS  Google Scholar 

  • Ladero, J.M.; Arrojo, A.; de Salamanca, R.E.; Gomez, M.; Cano, F. and Alfonso, M.: Hepatic acetylator phenotype in diabetes mellitus. Annals of Clinical Research 14: 187–189 (1982).

    PubMed  CAS  Google Scholar 

  • Lahita, R.; Kluger, J.; Drayer, D.E.; Koffler, D. and Reidenberg, M.M.: Antibodies to nuclear antigens in patients treated with procainamide or acetyl-procainamide. New England Journal of Medicine 301: 1382–1385 (1979).

    PubMed  CAS  Google Scholar 

  • Larsson, R.; Karlberg, B.E.; Norlander, B. and Wirsen, A.: Prizidilol, an antihypertensive with precapillary vasodilator and β-adrenoceptor blocking actions, in primary hypertension. Clinical Pharmacology and Therapeutics 29: 588–593 (1981).

    PubMed  CAS  Google Scholar 

  • Larsson, R.; Karlsson, E. and Molin, L.: Spontaneous systemic lupus erythematosus and acetylator phenotype. Acta Medica Scandinavica 201: 223–226 (1977).

    PubMed  CAS  Google Scholar 

  • Lawson, D.H.; Henry, D.A.; Lowe, J.; Reavey, P.; Rennie, J.A. and Solomon, A.: Acetylator phenotype in spontaneous SLE and rheumatoid arthritis. Annals of the Rheumatic Diseases 38: 171–173 (1979).

    PubMed  CAS  Google Scholar 

  • Leden, I.; Hanson, A.; Melander, A.; Sturfelt, G.; Svensson, B. and Wahlin-Boll, E.: Varying distribution of acetylation phenotypes in RA patients with and without Sjögren’s syndrome. Scandinavian Journal of Rheumatology 10: 253–255 (1981).

    PubMed  CAS  Google Scholar 

  • Lcc, E.J. and Lee, L.K.H.: A simple pharmacokinetic method for separating the three acetylation phenotypes: A preliminary report. British Journal of Clinical Pharmacology 13: 375–378 (1982).

    Google Scholar 

  • Lennard, M.S.; Freestone, S.; Ramsay, L.E.; Tucker, G.T. and Woods, H.F.: Oxidation phenotype and beta-blockers. New England Journal of Medicine 308: 965 (1983a).

    Google Scholar 

  • Lennard, M.S.; Silas, J.H.; Smith, A.J. and Tucker, G.T.: Determination of debrisoquine and its 4-hydroxy metabolite in biological fluids by gas chromatography with flame-ionisation and nitrogen-selective detection. Journal of Chromatography 133: 161–166 (1977).

    PubMed  CAS  Google Scholar 

  • Lennard, M.S.; Silas, J.H.; Freestone, S.; Ramsay, L.E.; Tucker, G.T. and Wood, H.F.: Oxidation phenotype — a major determinant of metoprolol metabolism and response. New England Journal of Medicine 303: 1558–1560 (1982a).

    Google Scholar 

  • Lennard, M.S.; Silas, J.H.; Freestone, S. and Trevethick, J.: Defective metabolism of metoprolol in poor hydroxylators of debrisoquine. British Journal of Clinical Pharmacology 14: 301–303 (1982b).

    PubMed  CAS  Google Scholar 

  • Lennard, M.S.; Jackson, P.R.; Freestone, S.; Tucker, G.T.; Ramsay, L.E. and Woods, H.F.: The relationship between debrisoquine oxidation phenotype and the pharmacokinetics and pharmacodynamics of propranolol. British Journal of Clinical Pharmacology 17: 679–685 (1984).

    PubMed  CAS  Google Scholar 

  • Lennard, M.S.; Tucker, G.T.; Silas, M.D.; Freestone, S.; Ramsay, L.E. and Woods, H.F.: Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquine metabolizers. Clinical Pharmacology and Therapeutics 34: 732–737 (1983b).

    PubMed  CAS  Google Scholar 

  • Lima, J.J.; Conti, D.R.; Goldfarb, A.L; Tilstone, W.J.; Golden, L.H. and Jusko, W.J.: Clinical pharmacokinetics of procainamide infusions in relation to acetylator phenotype. Journal of Pharmacokinetics and Biopharmaceutics 7: 69–85 (1979).

    PubMed  CAS  Google Scholar 

  • Lower Jr, G.M.; Nilsson, T.; Nelson, C.E.; Wolf, H.; Gamsky, T.E. and Bryan, G.T.: N-acetyltranferase phenotype and risk in urinary bladder cancer: Approaches in molecular epidemiology. Environmental Health Perspectives 29: 71–79 (1979).

    PubMed  CAS  Google Scholar 

  • Lunde, P.K.M.; Frislid, K. and Hansteen, V.: Disease and acetylation polymorphism. Clinical Pharmacokinetics 2: 182–197 (1977).

    PubMed  CAS  Google Scholar 

  • McLaren, E.H.; Burden, A.C. and Moorhead, P.J.: Acetylator phenotype in diabetic neuropathy. British Medical Journal 2: 291–293 (1977).

    PubMed  CAS  Google Scholar 

  • Macklon, A.F.; Savage, R.L. and Rawlins, M.D.: Gilbert’s syndrome and drug metabolism. Clinical Pharmacokinetics 4: 223–232 (1979).

    PubMed  CAS  Google Scholar 

  • McQueen, E.G.: Pharmacological basis of adverse drug reactions; in Avery (Ed.) Drug Treatment, 2nd edition, pp. 202–235 (ADIS Press, Sydney 1980).

    Google Scholar 

  • Mahgoub, A.; Idle, J.R.; Dring, LG.; Lancaster, R. and Smith, R.L.: Polymorphic hydroxylation of debrisoquine in man. Lancet 2: 584–586 (1977).

    PubMed  CAS  Google Scholar 

  • Mahgoub, A.; Idle, J.R. and Smith, R.L: A population and familial study of the defective alicyclic hydroxylation of debrisoquine among Egyptians. Xenobiotica 9: 51–56 (1979).

    PubMed  CAS  Google Scholar 

  • Mansilla-Tinoco, R.; Hariand, S.J.; Ryan, P.J.; Bernstein, R.M.; Dollery, C.T.; Hughes, G.R.V.; Bulpitt, C.J.; Morgan, A. and Jones, J.M.: Hydralazine, antinuclear antibodies, and the lupus syndrome. British Medical Journal 284: 936–939 (1982).

    PubMed  CAS  Google Scholar 

  • Marshall, E.F.; Mountjoy, C.Q.; Campbell, I.C.; Garside, R.F.; Leitch, I.M. and Roth, M.: The influence of acetylator phenotype on the outcome of treatment with phenelzine, in a clinical trial. British Journal of Clinical Pharmacology 6: 247–254 (1978).

    PubMed  CAS  Google Scholar 

  • Mazze, R.L; Woodruff, R.E. and Heerdt, E.: Isoniazid-induced enflurane defluorination in humans. Anesthesiology 57: 528 (1982).

    Google Scholar 

  • Mbanefo, C; Bababunmi, E.A.; Mahgoub, A.; Sloan, T.P.; Idle, J.R. and Smith, R.L: A study of the debrisoquine hydroxylation polymorphism in a Nigerian population. Xenobiotica 10: 811–818 (1981).

    Google Scholar 

  • Miller, M.E.; Garland, W.A.; Min, B.H.; Ludwick, B.T.; Ballard, R.H. and Levy, R.H.: Clonozepam acetylation in fast and slow acetylators. Clinical Pharmacology and Therapeutics 30: 343–347 (1981).

    PubMed  CAS  Google Scholar 

  • Miller, M.E.: Acetylator phenotype in bladder cancer. Lancet 2: 1348 (1982).

    PubMed  CAS  Google Scholar 

  • Miller, M.E. and Cosgriff, J.M.: Acetylator phenotype in human bladder cancer. Journal of Urology 130: 65–66 (1983).

    PubMed  CAS  Google Scholar 

  • Mitchell, J.R.; Thorgeirsson, U.P.; Black, M.; Timbrell, J.A.; Snodgrass, W.R.; Potter, W.Z.; Jollow, D.J. and Keiser, H.R.: Increased incidence of isoniazid hepatitis in rapid acetylators: Possible relation to hydrazine metabolites. Clinical Pharmacology and Therapeutics 18: 70–79 (1975).

    PubMed  CAS  Google Scholar 

  • Mitchell, S.C; Waring, R.H.; Haley, C.S.; Idle, J.R. and Smith, R.L.: Genetic aspects of the polynodally distributed sulphoxidation of S-carboxymethyl-L-cysteine in man. British Journal of Clinical Pharmacology 18: 507–521 (1984).

    PubMed  CAS  Google Scholar 

  • Molin, L.; Larsson, R. and Karlsson, E.: Evaluation of the sulphapyridine acetylator phenotyping test in healthy subjects and in patients with cardiac and renal diseases. Acta Medica Scandinavica 201: 217–222 (1977).

    PubMed  CAS  Google Scholar 

  • Morris, R.J.; Freed, C.R. and Kohler, P.F.: Drug acetylation phenotype unrelated to development of spontaneous systemic lupus erythematosus. Arthritis and Rheumatism 22: 777–780 (1979).

    PubMed  CAS  Google Scholar 

  • Mountjoy, C.Q.; Marshall, E.F.; Campbell, I.C; Garside, R.F. and Roth, M.: Prediction of response to treatment with phenelzine in neurotic patients. Progress in Neuro-Psychopharmacology 4: 303–308 (1980).

    PubMed  CAS  Google Scholar 

  • Gates, N.S.; Shah, R.R.; Idle, J.R. and Smith, R.L.: Genetic polymorphism of phenformin 4-hydroxylation. Clinical Pharmacology and Therapeutics 32: 81–89 (1982).

    Google Scholar 

  • Gates, N.S.; Shah, R.R.; Idle, J.R. and Smith, R.L.: Influence of oxidation polymorphism on phenformin kinetics and dynamics. Clinical Pharmacology and Therapeutics 34: 827–834 (1983).

    Google Scholar 

  • Oka, M. and Seppala, O.: Acetylation phenotype in rheumatoid arthritis. Scandinavian Journal of Rheumatology 7: 29–30 (1978).

    PubMed  CAS  Google Scholar 

  • Olsen, H. and Mørland, J.: Ethanol-induced increase in drug acetylation in man and isolated rat liver cells. British Medical Journal 2: 1260–1262 (1978).

    PubMed  CAS  Google Scholar 

  • Olsen, H.: Colorimetric or HPLC metric for acetylator phenotyping with sulphadimine? Acta Pharmacologica et Toxicologica 50: 75–77 (1982).

    PubMed  CAS  Google Scholar 

  • Otton, S.V.; Inaba, T. and Kalow, W.: Inhibition of sparteine oxidation in human liver by tricyclic antidepressants and other drugs. Life Sciences 32: 795–800 (1983).

    PubMed  CAS  Google Scholar 

  • Otton, S.V.; Inaba, T. and Kalow, W.: Competitive inhibition of sparteine oxidation in human liver by beta-adrenoceptor antagonists and other cardiovascular drugs. Life Sciences 34: 73–80 (1984).

    PubMed  CAS  Google Scholar 

  • Panayi, G.S.; Huston, G.; Shah, R.R.; Mitchell, S.C; Idle, J.R.; Smith, R.L. and Waring, R.H.: Deficient sulphoxidation status and D-penicillamine toxicity. Lancet 1: 414 (1983).

    PubMed  CAS  Google Scholar 

  • Paykel, E.S.; West, P.S.; Rowan, P.R. and Parker, R.R.: Influence of acetylator phenotype on antidepressant effects of phenelzine. British Journal of Psychiatry 141: 243–248 (1982).

    PubMed  CAS  Google Scholar 

  • Penno, M.B.; Dvorchik, B.H. and Vesell, E.S.: Genetic variation in rats of antipyrine metabolite formation: A study in uninduced twins. Proceedings of the National Academy of Science (USA) 78: 5193–5196 (1981).

    CAS  Google Scholar 

  • Penno, M.B. and Vesell, E.S.: Monogenic control of variations in antipyrine metabolite formation: New polymorphism of hepatic drug oxidation. Journal of Clinical Investigation 71: 1698–1709 (1983).

    PubMed  CAS  Google Scholar 

  • Perry Jr, H.M.: Late toxicity to hydralazine resembling systemic lupus erythematosus or rheumatoid arthritis. American Journal of Medicine 54: 58–71 (1973).

    PubMed  Google Scholar 

  • Perry Jr, H.M.; Tan, E.M.; Cordody, S. and Sahamato, A.: Relationship of acetyltransferase activity to antinuclear antibodies and toxic symptoms on hypertensive patients treated with hydralazine. Journal of Laboratory and Clinical Medicine 76: 114–125 (1970).

    PubMed  Google Scholar 

  • Peters, J.H.; Gordon, G.R. and Murray, J.F.: Metabolic disposition of dapsone in African leprosy patients. Leprosy Review 50: 7–19 (1979).

    Google Scholar 

  • Peters, J.H.; Murray, J.F.; Gordon, G.R. and Gelber, R.H.: Dapsone in saliva and plasma of man. Pharmacology 22: 162–171 (1981).

    PubMed  CAS  Google Scholar 

  • Peters, J.H.; Murray, J.F.; Gordon, G.R.; Levy, L; Russell, D.A.; Scott, G.C; Vincin, D.R. and Shepard, C.C: Acedapsone treatment of leprosy patients: Response versus drug disposition. American Journal of Tropical Medicine and Hygiene 26: 127–136 (1977).

    PubMed  CAS  Google Scholar 

  • Platzer, R.; Küpfer, A.; Bircher, J. and Preisig, R.: Polymorphic acetylation and aminopyrine demethylation in Gilbert’s syndrome. European Journal of Clinical Investigation 8: 219–223 (1978).

    PubMed  CAS  Google Scholar 

  • Price Evans, D.A.; Eze, L.C and Whibley, E.J.: The association of the slow acetylator phenotype with bladder cancer. Journal of Medical Genetics 20: 330–333 (1983a).

    Google Scholar 

  • Price Evans, D.A.; Harmer, D.; Downham, D.Y.; Whibley, E.J.; Idle, J.R.; Ritchie, J. and Smith, R.L.: The genetic control of sparteine and debrisoquine metabolism in man with new methods of analysing bimodal distributions. Journal of Medical Genetics 20: 321–329 (1983b).

    Google Scholar 

  • Price Evans, D.A.; Mahgoub, A.; Sloan, T.P.; Idle, J.R. and Smith, R.L.: A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. Journal of Medical Genetics 17: 102–105 (1980).

    Google Scholar 

  • Price Evans, D.A.; Manley, K.A. and McKussick, V.A.: Genetic control of isoniazid metabolism in man. British Medical Journal 2: 485–491 (1960).

    Google Scholar 

  • Price Evans, D.A. and White, T.A.: Human acetylation polymorphism. Journal of Laboratory and Clinical Medicine 63: 394–403 (1964).

    Google Scholar 

  • Raghupati Sarma, G.; Kailasam, S.; Nair, N.G.K.; Narayana, A.S.L and Tripathy, S.P.: Effect of prednisolone and rifampicin on isoniazid metabolism in slow and rapid inactivators of isoniazid. Antimicrobial Agents and Chemotherapy 18: 661–666 (1980).

    Google Scholar 

  • Raghuram, T.C; Koshakji, R.P.; Wilkinson, G.R. and Wood, A.J.J.: Polymorphic ability to metabolize propranolol alters 4-hydroxypropranolol levels but not beta blockade. Clinical Pharmacology and Therapeutics 36: 51–56 (1984).

    PubMed  CAS  Google Scholar 

  • Ramsay, L.E.; Silas, J.H.; Ollerenshaw, J.D.; Tucker, G.T.; Phillips, F.C and Freestone, S.: Should the acetylator phenotype be determined when prescribing hydralazine for hypertension. European Journal of Clinical Pharmacology 26: 39–42 (1984).

    PubMed  CAS  Google Scholar 

  • Rao, K.V.N.; Mitchison, D.A.; Nair, N.G.K.; Prema, K. and Tripathy, S.P.: Sulphadimidine acetylation test for classification of patients as slow or rapid inactivators of isoniazid. British Medical Journal 3: 495–497 (1970).

    PubMed  CAS  Google Scholar 

  • Reece, P.A.; Cozamanis, I. and Zacest, R.: Kinetics of hydralazine and its main metabolites in slow and fast acetylators. Clinical Pharmacology and Therapeutics 28: 769–778 (1980).

    PubMed  CAS  Google Scholar 

  • Reece, P.A.; Cozamanis, I. and Zacest, R.: Influence of acetylator phenotype on the pharmacokinetics of a new vasodilator antihypertensive, endralazine. European Journal of Clinical Pharmacology 23: 523–527 (1982).

    PubMed  CAS  Google Scholar 

  • Reidenberg, M.M.: The clinical induction of systemic lupus erythematosus and lupus-like illnesses. Arthritis and Rheumatism 24: 1005–1009 (1981).

    Google Scholar 

  • Reidenberg, M.M.; Drayer, D.E.; Levy, M. and Warner, H.: Polymorphic acetylation of procainamide in man. Clinical Pharmacology and Therapeutics 17: 722–730 (1975).

    PubMed  CAS  Google Scholar 

  • Reidenberg, M.M.; Levy, M.; Drayer, D.E.; Zylber-Katz, E. and Robbins, W.C: Acetylator phenotype in idiopathic systemic lupus erythematosus. Arthritis and Rheumatism 23: 569–573 (1980).

    PubMed  CAS  Google Scholar 

  • Reidenberg, M.M. and Martin, J.H.: The acetylator phenotype of patients with systemic lupus erythematosus. Drug Metabolism and Disposition 2: 71–73 (1974).

    PubMed  CAS  Google Scholar 

  • Ritchie, J.C.; Sloan, T.P.; Idle, J.R. and Smith, R.L: Toxicological implications of polymorphic drug metabolism; in Environmental Chemicals, Enzyme Function and Human Disease. CIBA Foundation Symposium, 76, pp. 219–244 (Excerpta Medica, Amsterdam, New York, Oxford 1980).

    Google Scholar 

  • Roden, D.N.; Reele, S.B.; Higgins, S.B.; Mayol, R.F.; Gammans, R.E.; Oates, J.A. and Woosley, R.L.: Total suppression of ventricular arrythmias by encainide. New England Journal of Medicine 302: 878–882 (1980a).

    Google Scholar 

  • Roden, D.N.; Reele, S.B.; Higgins, S.B.; Smith, R.; Oates, J.A. and Woosley, R.L.: Antiarrthmic efficacy, pharmacokinetics and safety of N-acetylprocainamide in man. American Journal of Cardiology 46: 463–468 (1980b).

    PubMed  CAS  Google Scholar 

  • Rose, S.: The relationship of acetylation phenotype to treatment with MAOIs: A review. Journal of Clinical Psychopharmacology 2: 161–164 (1982).

    PubMed  CAS  Google Scholar 

  • Rothfield, N.F.; Bierer, W.F. and Garfield, J.W.: Isoniazid induction of antinuclear antibodies, a prospective study. Annals of Internal Medicine 88: 650–652 (1978).

    PubMed  CAS  Google Scholar 

  • Sanders, G.L. and Rawlins, M.D.: Phenelzine: Acetylator status and clinical response. British Journal of Clinical Pharmacology 7: 451–452 (1979).

    PubMed  CAS  Google Scholar 

  • Schröder, P.; Klitgaard, N.A. and Simonsen, E.: Significance of the acetylation phenotype and the therapeutic effect of procainamide. European Journal of Clinical Pharmacology 15: 63–68 (1979).

    PubMed  Google Scholar 

  • Scott, J. and Poffenbarger, P.L.: Pharmacogenetics of tolbutamide metabolism in humans. Diabetes 28: 41–51 (1979).

    PubMed  CAS  Google Scholar 

  • Shah, R.R.; Oates, N.S.; Idle, J.R. and Smith, R.L: Beta-blockers and drug oxidation status. Lancet 1: 508–509 (1982a).

    Google Scholar 

  • Shah, R.R.; Oates, N.S.; Idle, J.R.; Smith, R.L. and Lockhart, J.D.F.: Im paired oxidation of debrisoquine in patients with perhexiline neuropathy. Brit. Med. J. 284: 295–299 (1982b).

    CAS  Google Scholar 

  • Sharp, M.E.; Wallace, S.; Hindmarsh, K.W. and Brown, M.A.: Acetylator phenotype and serum levels of sulphapyridine in patients with inflammatory bowel disease. European Journal of Clinical Pharmacology 21: 243–250 (1981).

    PubMed  CAS  Google Scholar 

  • Shepherd, A.M.M.; Lin, M-S.; McNay, J.; Ludden, T. and Musgrave, G.: Determinants of response to intravenous hydralazine in hypertension. Clinical Pharmacology and Therapeutics 30: 773–781 (1981b).

    PubMed  CAS  Google Scholar 

  • Shepherd, A.M.M.; McNay, J.L; Ludden, T.M.; Lin, M.-S. and Musgrave, G.E.: Plasma concentration and acetylator phenotype determine response to oral hydralazine. Hypertension 3: 580–585 (1981a).

    PubMed  CAS  Google Scholar 

  • Singlas, E.; Goujet, M.A. and Simon, P.: Pharmacokinetics of perhexiline maleate in anginal patients with and without peripheral neuropathy. European Journal of Clinical Pharmacology 14: 195–201 (1978).

    PubMed  CAS  Google Scholar 

  • Sjöqvist, F.; Borga, O. and Orme, M.L’E.: Fundamentals of clinical pharmacology; in Avery (Ed) Drug Treatment, 2nd edition, pp. 32–33 (ADIS Press, Sydney 1980).

    Google Scholar 

  • Sloan,, T.P.; Idle, J.R. and Smith, R.L: Influence of DH/DI alleles regulating debrisoquine oxidation of Phenytoin hydroxylation. Clinical Pharmacology and Therapeutics 29: 493–497 (1981).

    PubMed  CAS  Google Scholar 

  • Sloan, T.P.; Lancaster, R.; Shah, R.; Idle, J.R. and Smith, R.L: Genetically determined oxidation capacity and the disposition of debrisoquine. British Journal of Clinical Pharmacology 15: 443–450 (1983).

    PubMed  CAS  Google Scholar 

  • Sloan, T.P.; Mahgoub, A.; Lancaster, R.; Idle, J.R. and Smith, R.L: Polymorphism of carbon oxidation of drugs and clinical implications. British Medical Journal 2: 655–657 (1978).

    PubMed  CAS  Google Scholar 

  • Smith, R.L; Idle, J.R.; Mahgoub, A.A.; Sloan, T.P. and Lancaster, R.: Genetically determined defects of oxidation at carbon centres of drugs. Lancet 1: 943–944 (1978).

    PubMed  CAS  Google Scholar 

  • Sonnhag, C; Karlsson, E. and Hed, J.: Procainamide-induced lupus erythematosus-like syndrome in relation to acetylator phenotype and plasma levels of procainamide. Acta Medica Scandinavica 206: 245–251 (1979).

    PubMed  CAS  Google Scholar 

  • Strandberg, I.; Boman, G.; Hassler, L. and Sjöqvist, F.: Acetylator phenotype in patients with hydralazine-induced lupoid syndrome. Acta Medica Scandinavica 200: 362–371 (1976).

    Google Scholar 

  • Suhardjono, D.; Boutagy, J.S. and Shenfield, G.M.: Influence of blood glucose on acetylation status (Abstract). Clinical and Experimental Pharmacology and Physiology Suppl. 8: 64 (1984).

    Google Scholar 

  • Surana, M.K.; Mathur, A.K.; Banerjee, K. and Agarwal, T.D.: Correlation between acetylator phenotype and neuropathy in diabetes mellitus patients. Journal of the Association of Physicians of India 30: 437–439 (1982).

    PubMed  CAS  Google Scholar 

  • Swift, C.G.; Hewick, D.S.; Ogg, G. and Stevenson, I.H.: Acetylator phenotype nitrazepam plasma concentrations and residual effects. British Journal of Clinical Pharmacology 9: 312P–313P (1980).

    PubMed  CAS  Google Scholar 

  • Talseth, T. and Landmark, K.H.: Polymorphic acetylation of sulphadimidine in normal and uraemic man. European Journal of Clinical Pharmacology 11: 33–36 (1977).

    PubMed  CAS  Google Scholar 

  • Thom, S.; Farrow, P.R.; Santoso, B.; Alberti, K.G.M.M. and Rawlins, M.D.: Effects of oral glucose in lime juice on isoniazid kinetics. Brit. J. Clin. Pharmacol. 11: 423P (1981).

    Google Scholar 

  • Tilstone, W.J. and Johnston, E.C.: Acetylator status and response to phenelzine. Lancet 2: 1151–1152 (1978)

    PubMed  CAS  Google Scholar 

  • Timbrell, J.A.; Hariand, S.J. and Facchini, V.: Polymorphic acetylation of hydralazine. Clinical Pharmacology and Therapeutics 28: 350–355 (1980).

    PubMed  CAS  Google Scholar 

  • Timbrell, J.A.; Wright, J.M. and Baillie, T.A.: Monoacetylhydrazine as a metabolite of isoniazid in man. Clinical Pharmacology and Therapeutics 22: 602–608 (1977).

    PubMed  CAS  Google Scholar 

  • Uetrecht, J.P. and Woosley, R.L.: Acetylator phenotype and lupus erythematosus. Clinical Pharmacokinetics 6: 118–134 (1981).

    PubMed  CAS  Google Scholar 

  • University Group Diabetes Program: A study of the effects of hypoglycaemic agents on vascular complications in patients with adult-onset diabetes: II. Mortality results. Diabetes 19(Suppl. 2): 787–830 (1970).

    Google Scholar 

  • Valsalan, V.C. and Cooper, G.L: Carbamazepine intoxication caused by interaction with isoniazid. British Medical Journal 285: 261–262 (1982).

    PubMed  CAS  Google Scholar 

  • Vandenberg, M.J.; Wright, P.; Holmes, J.; Rogers, H.J. and Ahmad, R.A.: The hypotensive response to hydralazine, in triple therapy, is not related to acetylator phenotype. British Journal of Clinical Pharmacology 13: 747–750 (1982).

    Google Scholar 

  • van Hees, P.A.; van Eiferen, L.W.; van Rossum, J.M. and van Tongeren, J.H.: Haemolysis during salicylazosulfapyridine therapy. American Journal of Gastroenterology 70: 501–505 (1979).

    Google Scholar 

  • Vansant, J.; Woosley, R.L; John, J.T. and Sergent, J.S.: Normal distribution of acetylation phenotypes in systemic lupus erythematosus. Arthritis and Rheumatism 21: 192–195 (1978).

    PubMed  CAS  Google Scholar 

  • Vasko, M.R.; Bell, R.D.; Daly, D.D. and Pippenger, C.E.: Inheritance of p henytoin hypomctabolism: A kinetic study of one family. Clin. Pharmacol. Therap. 27: 96–103 (1980).

    CAS  Google Scholar 

  • Vesell, E.S.: Why individuals vary in their response to drugs. Trends in Pharmacological Sciences 1: 349–351 (1980).

    CAS  Google Scholar 

  • Vesell, E.S.: Pharmacogenetics: Multiple interactions between genes and environment as determinants of drug response. American Journal of Medicine 66: 183–187 (1979).

    PubMed  CAS  Google Scholar 

  • Vesell, E.S. and Penno, M.B.: Assessment of methods to identify sources of interindividual pharmacokinetic variations. Clinical Pharmacokinetics 8: 378–409 (1983).

    PubMed  CAS  Google Scholar 

  • Waring, R.H.; Mitchell, S.C.; Shah, R.R.; Idle, J.R. and Smith, R.L.: Polymorphic sulphoxidation of S-carboxymethyl-L-cysteine in man. Biochemical Pharmacology 31: 3151–3154 (1982).

    PubMed  CAS  Google Scholar 

  • Weber, W.W. and Glowinski, I.B.: Acetylation; in Jakoby (Ed.) Enzymatic Basis for Detoxication; pp. 169–186 (Academic Press, New York 1980).

    Google Scholar 

  • Weinshilboum, R.M.: Biochemical genetics of catecholamines in humans. Mayo Clinic Proceedings 58: 319–330 (1983).

    PubMed  CAS  Google Scholar 

  • White, T.A. and Price Evans, D.A.: The acetylation of sulphamethazine and sulphamethoxypyridazine by human subjects. Clinical Pharmacology and Therapeutics 9: 80–88 (1968).

    PubMed  CAS  Google Scholar 

  • Wolf, H.; Lower Jr, G.M. and Bryan, G.T.: Role of N-acetyltransferase phenotype in human susceptibility to bladder carcinogenic arylamines. Scandinavian Journal of Urology and Nephrology 14: 161–165 (1980).

    PubMed  CAS  Google Scholar 

  • Woodhouse, K.W.; Adams, P.C.; Clothier, A.; Mucklow, J.C. and Rawlins, M.D.: N-acetylation phenotype in bladder cancer. Human Toxicology 1: 443–445 (1982).

    PubMed  CAS  Google Scholar 

  • Woolhouse, N.M.; Andoh, B.; Mahgoub, A.; Sloan, T.P.; Idle, J.R. and Smith, R.L.: Debrisoquine hydroxylation polymorphism among Ghanaians and Caucasians. Clinical Pharmacology and Therapeutics 26: 584–591 (1979).

    PubMed  CAS  Google Scholar 

  • Woolhouse, N.M. and Atu-Taylor, L.C.: Influence of double genetic polymorphism on response to sulfamethazine. Clinical Pharmacology and Therapeutics 31: 377–383 (1982).

    PubMed  CAS  Google Scholar 

  • Woosley, R.L.; Drayer, D.E.; Reidenberg, M.M.; Nies, A.S.; Carr, K. and Oates, J.A.: Effect of acetylator phenotype on the rate at which procainamide induces antinuclear antibodies and the lupus syndrome. New England Journal of Medicine 298: 1157–1159(1978).

    PubMed  CAS  Google Scholar 

  • Woosley, R.L; Roden, D.M.; Duff, H.G.; Carey, B.L; Wood, A.J.J. and Wilkinson, G.R.: Coinheritance of deficient oxidative metabolism of encainide and debrisoquine. Clinical Research 29: 501A (1981).

    Google Scholar 

  • Young, J.R.: Acetylator status and liver function profile changes in labyrinthine ischaemia patients treated with thymoxamine. Journal of International Medical Research 8: 356–357 (1980).

    PubMed  CAS  Google Scholar 

  • Zacest, R. and Koch-Weser, J.: Relation of hydralazine plasma concentration to dosage and hypotensive action. Clinical Pharmacology and Therapeutics 13: 420–425 (1972).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, D.W.J. Genetically Determined Variability in Acetylation and Oxidation. Drugs 29, 342–375 (1985). https://doi.org/10.2165/00003495-198529040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198529040-00003

Keywords

Navigation