Skip to main content
Log in

Pharmacological Strategies to Decrease Transfusion Requirements in Patients Undergoing Surgery

  • Therapy in Practice
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Surgical procedures are inevitably associated with bleeding. The amount of blood loss may vary widely between different surgical procedures and depends on surgical as well as non-surgical factors. Whereas adequate surgical haemostasis may suffice in most patients, pro-haemostatic pharmacological agents may be of additional benefit in patients with (diffuse) surgical bleeding or in patients with a specific underlying haemostatic defect. In general, surgical haemostasis and pharmacological therapies can be complementary in controlling blood loss.

The use of pharmacological therapies to reduce blood loss and blood transfusions in surgery has historically been restricted to a few drugs. Antifibrinolytic agents (aprotinin, tranexamic acid and aminocaproic acid) have the best evidence supporting their use, especially in cardiac surgery, liver transplantation and some orthopaedic surgical procedures. Meta-analyses of randomised, controlled trials in cardiac patients have suggested a slight benefit of aprotinin, compared with the other antifibrinolytics. Desmopressin is the treatment of choice in patients with mild haemophilia A and von Willebrand disease. It has also been shown to be effective in patients undergoing cardiac surgery who received aspirin up to the time of operation. However, overall evidence does not support a beneficial effect of desmopressin in patients without pre-existing coagulopathy undergoing elective surgical procedures. Topical agents, such as fibrin sealants have been successfully used in a variety of surgical procedures. However, only very few controlled clinical trials have been performed and scientific evidence supporting their use is still limited.

Novel drugs, like recombinant factor VIIa (eptacog alfa), are currently under clinical investigation. Recombinant factor VIIa has been introduced for the treatment of haemophilia patients with inhibitors, either in surgical or non-surgical situations. Preliminary data indicate that it may also be effective in surgical patients without pre-existing coagulation abnormalities. More clinical trials are warranted before definitive conclusions can be drawn about the safety and the exact role of this new drug in surgical patients.

Only adequately powered and properly designed randomised, clinical trials will allow us to define the most effective and the safest pharmacological therapies for reducing blood loss and transfusion requirements in surgical patients. Future trials should also consider cost-effectiveness because of considerable differences in the costs of the available pro-haemostatic pharmacological agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1

Similar content being viewed by others

References

  1. Nielsen HJ. Detrimental effects of perioperative blood transfusion. Br J Surg 1995; 82: 582–7

    Article  PubMed  CAS  Google Scholar 

  2. Vamvakas EC. Possible mechanisms of allogeneic blood transfusion-associated postoperative infection. Transfus Med Rev 2002; 16: 144–60

    Article  PubMed  Google Scholar 

  3. Bick RL. Hemostasis defects associated with cardiac surgery, prosthetic devices, and other extracorporeal circuits. Semin Thromb Hemost 1985; 11: 249–80

    Article  PubMed  CAS  Google Scholar 

  4. Porte RJ, Knot EA, Bontempo FA. Hemostasis in liver transplantation. Gastroenterology 1989; 97: 488–501

    PubMed  CAS  Google Scholar 

  5. Hedner U, Glazer S, Pingel K, et al. Successful use of recombinant factor VIIa in patient with severe haemophilia A during synovectomy [letter]. Lancet 1988; II: 1193

    Article  Google Scholar 

  6. Roberts HR. Clinical experience with activated factor VII: focus on safety aspects. Blood Coagul Fibrinolysis 1998; 9 Suppl. 1: S115–8

    PubMed  CAS  Google Scholar 

  7. Dunn CJ, Goa KL. Fibrin sealant: a review of its use in surgery and endoscopy. Drugs 1999; 58: 863–86

    Article  PubMed  CAS  Google Scholar 

  8. Jackson MR, Alving BM. Fibrin sealant in preclinical and clinical studies. Curr Opin Hematol 1999; 6: 415–9

    Article  PubMed  CAS  Google Scholar 

  9. Ortel TL, Mercer MC, Thames EH, et al. Immunologic impact and clinical outcomes after surgical exposure to bovine thrombin. Ann Surg 2001; 233: 88–96

    Article  PubMed  CAS  Google Scholar 

  10. Chouhan VD, De LA, Cadena RA, et al. Simultaneous occurrence of human antibodies directed against fibrinogen, thrombin, and factor V following exposure to bovine thrombin: effects on blood coagualtion, protein C activation and platelet function. Thromb Haemost 1997; 77: 343–9

    PubMed  CAS  Google Scholar 

  11. Streiff MB, Ness PM. Acquired FV inhibitors: a needless iatrogenic complication of bovine thrombin exposure. Transfusion 2002; 42: 18–26

    Article  PubMed  Google Scholar 

  12. Carless PA, Anthony DM, Henry DA. Systematic review of the use of fibrin sealant to minimize perioperative allogeneic blood transfusion. Br J Surg 2002; 89: 695–703

    Article  PubMed  CAS  Google Scholar 

  13. Rousou J, Levitsky S, Gonzalez-Lavin L, et al. Randomized clinical trial of fibrin sealant in patients undergoing resternotomy or reoperation after cardiac operations: a multicenter study. J Thorac Cardiovasc Surg 1989; 97: 194–203

    PubMed  CAS  Google Scholar 

  14. Levitsky S. Further information on the fibrin sealant conference. Transfusion 1996; 36: 845–6

    Article  PubMed  CAS  Google Scholar 

  15. Dimo B, Jorgensen T, Kjaergaard J, et al. Randomized trial of fibrin adhesive for reduction of drained secretion after elective cholecystectomy. Acta Chir Scand 1989; 155: 177–8

    PubMed  CAS  Google Scholar 

  16. Kohno H, Nagasue N, Chang YC, et al. Comparison of topical hemostatic agents in elective hepatic resection: a clinical prospective randomized trial. World J Surg 1992; 16: 966–9

    Article  PubMed  CAS  Google Scholar 

  17. Rakocz M, Mazar A, Varon D, et al. Dental extractions in patients with bleeding disorders: the use of fibrin glue. Oral Surg Oral Med Oral Pathol 1993; 75: 280–2

    Article  PubMed  CAS  Google Scholar 

  18. Glickman M, Gheissari A, Money S, et al. A polymeric sealant inhibits anastomotic suture hole bleeding more rapidly than gelfoam/thrombin: results of a randomized controlled trial. Arch Surg 2002; 137: 326–31

    Article  PubMed  CAS  Google Scholar 

  19. Codispoti M, Mankad PS. Significant merits of a fibrin sealant in the presence of coagulopathy following paediatric cardiac surgery: randomised controlled trial. Eur J Cardiothorac Surg 2002; 22: 200–5

    Article  PubMed  CAS  Google Scholar 

  20. Wang GJ, Hungerford DS, Savory CG, et al. Use of fibrin sealant to reduce bloody drainage and hemoglobin loss after total knee arthroplasty: a brief note on a randomized prospective trial. J Bone Joint Surg Am 2001; 2001: 1503–5

    Google Scholar 

  21. Oliver DW, Hamilton SA, Figle AA, et al. A prospective, randomized, double-blind trial of the use of fibrin sealant for face lifts. Plast Reconstr Surg 2001; 108: 2101–5

    Article  PubMed  CAS  Google Scholar 

  22. Koeckerling F, Schneider C, Scheidbach H, et al. Stellenwert der Fibrinklebung in der Leberchirurgie. In: Koeckerling F, Waclawiczek HW, editors. Leberchirurgie. Heidelberg: Johann Ambrosius Barth Verlag, 1999: 103–11

    Google Scholar 

  23. Mallett SV, Cox DJ. Thrombelastography. Br J Anaesth 1992; 69: 307–13

    Article  PubMed  CAS  Google Scholar 

  24. Graham ID, Fergusson D, McAuley L, et al. The use of technologies to minimize exposure to perioperative allogeneic blood transfusion in elective surgery: a survey of Canadian hospitals. Int J Technol Assess Health Care 2000; 16: 228–41

    Article  PubMed  CAS  Google Scholar 

  25. Fergusson D, Blair A, Henry D, et al. Technologies to minimize blood transfusion in cardiac and orthopedic surgery: results of a practice variation survey in nine countries. International Study of Peri-operative Transfusion (ISPOT) Investigators. Int J Technol Assess Health Care 1999; 15: 717–28

    CAS  Google Scholar 

  26. Verstraete M. Clinical application of inhibitors of fibrinolysis. Drugs 1985; 29: 236–61

    Article  PubMed  CAS  Google Scholar 

  27. Dunn CJ, Goa KL. Tranexamic acid: a review of its use in surgery and other indications. Drugs 1999; 57: 1005–32

    Article  PubMed  CAS  Google Scholar 

  28. Fremes SE, Wong BI, Lee E, et al. Metaanalysis of prophylactic drug treatment in the prevention of postoperative bleeding. Ann Thorac Surg 1994; 58: 1580–8

    Article  PubMed  CAS  Google Scholar 

  29. Laupacis A, Fergusson D. Drugs to minimize perioperative blood loss in cardiac surgery: meta-analyses using perioperative blood transfusion as the outcome. The International Study of Peri-operative Transfusion (ISPOT) Investigators. Anesth Analg 1997; 85: 1258–67

    CAS  Google Scholar 

  30. Levi M, Cromheecke ME, de-Jonge E, et al. Pharmacological strategies to decrease excessive blood loss in cardiac surgery: a meta-analysis of clinically relevant endpoints. Lancet 1999; 354: 1940–7

    Article  PubMed  CAS  Google Scholar 

  31. Munoz JJ, Birkmeyer NJ, Birkmeyer JDO, et al. Is epsilonaminocaproic acid as effective as aprotinin in reducing bleeding with cardiac surgery?: a meta-analysis. Circulation 1999; 99: 81–9

    Article  PubMed  CAS  Google Scholar 

  32. Troianos CA, Sypula RW, Lucas DMD, et al. The effect of prophylactic epsilon-aminocaproic acid on bleeding, transfusions, platelet function, and fibrinolysis during coronary artery bypass grafting. Anesthesiology 1999; 91: 430–5

    Article  PubMed  CAS  Google Scholar 

  33. Kang Y, Lewis JH, Navalgund A, et al. Epsilon-aminocaproic acid for treatment of fibrinolysis during liver transplantation. Anesthesiology 1987; 66: 766–73

    Article  PubMed  CAS  Google Scholar 

  34. McSorley MW, Taraporewalla KJ. Does prophylactic epsilonaminocaproic acid improve blood loss and coagulation in liver transplantation? Transplant Proc 1991; 23: 1941

    PubMed  CAS  Google Scholar 

  35. Dalmau A, Sabate A, Acosta F, et al. Tranexamic acid reduces red cell transfusion better than epsilon-aminocaproic acid or placebo in liver transplantation. Anesth Analg 2000; 91: 29–34

    PubMed  CAS  Google Scholar 

  36. Gamba G, Fornasari PM, Grignani G, et al. Haemostasis during transvesical prostatic adenomectomy: a controlled trial on the effect of drugs with antifibrinolytic and thrombin-like activities. Blut 1979; 39: 89–98

    Article  PubMed  CAS  Google Scholar 

  37. Miller RA, May MW, Hendry WF, et al. The prevention of secondary haemorrhage after prostatectomy: the value of antifibrinolytic therapy. Br J Urol 1980; 52: 26–8

    Article  PubMed  CAS  Google Scholar 

  38. Flanigan RC, Butler KMO, Neal W, et al. Comparison of epsilon aminocaproic acid and normal saline for postoperative bladder irrigation following transurethral resection of prostate. Urology 1985; 26: 227–8

    Article  PubMed  CAS  Google Scholar 

  39. Karski JM, Teasdale SJ, Norman PH, et al. Prevention of postbypass bleeding with tranexamic acid and epsilonaminocaproic acid. J Cardiothorac Vasc Anesth 1993; 7: 431–5

    Article  PubMed  CAS  Google Scholar 

  40. Casati V, Sandrelli L, Speziali G, et al. A. G, Spagnolo S. Hemostatic effects of tranexamic acid in elective thoracic aortic surgery: a prospective, randomized, double-blind, placebo-controlled study. J Thorac Cardiovasc Surg 2002; 123: 1084–91

    CAS  Google Scholar 

  41. Brown RS, Thwaites BK, Mongan PD. Tranexamic acid is effective in decreasing postoperative bleeding and transfusions in primary coronary artery bypass operations: a double-blind, randomized, placebo-controlled trial. Anesth Analg 1997; 85: 963–70

    PubMed  CAS  Google Scholar 

  42. Dryden PJO, Connor JP, Jamieson WR, et al. Tranexamic acid reduces blood loss and transfusion in reoperative cardiac surgery. Can J Anaesth 1997; 44: 934–41

    Article  PubMed  CAS  Google Scholar 

  43. Reid RW, Zimmerman AA, Laussen PC, et al. The efficacy of tranexamic acid versus placebo in decreasing blood loss in pediatric patients undergoing repeat cardiac surgery. Anesth Analg 1997; 84: 990–6

    PubMed  CAS  Google Scholar 

  44. Casati V, Gerli C, Franco A, et al. Tranexamic acid in off-pump coronary surgery: a preliminary, randomized, double-blind, placebo-controlled study. Ann Thorac Surg 2001; 72: 470–5

    Article  PubMed  CAS  Google Scholar 

  45. Kaspar M, Ramsay MA, Nguyen AT, et al. Continuous small-dose tranexamic acid reduces fibrinolysis but not transfusion requirements during orthotopic liver transplantation. Anesth Analg 1997; 85: 281–5

    PubMed  CAS  Google Scholar 

  46. Boylan JF, Klinck JR, Sandier AN, et al. Tranexamic acid reduces blood loss, transfusion requirements, and coagulation factor use in primary orthotopic liver transplantation. Anesthesiology 1996; 85: 1043–8

    Article  PubMed  CAS  Google Scholar 

  47. Dalmau A, Sabate A, Koo M, et al. Prophylactic use of tranexamic acid and incidence of arterial thrombosis in liver transplantation [letter]. Anesth Analg 2001; 93: 516

    PubMed  CAS  Google Scholar 

  48. Jansen AJ, Andreica S, Claeys MD, et al. Use of tranexamic acid for an effective blood conservation strategy after total knee arthroplasty. Br J Anaesth 1999; 83: 596–601

    Article  PubMed  CAS  Google Scholar 

  49. Zohar E, Fredman B, Ellis MH, et al. A comparative study of the postoperative allogeneic blood-sparing effects of tranexamic acid and of desmopressin after total knee replacement. Transfusion 2001; 41: 1285–9

    Article  PubMed  CAS  Google Scholar 

  50. Zohar E, Fredman B, Ellis M, et al. A comparative study of the postoperative allogeneic blood-sparing effect of tranexamic acid versus normovolemic hemodilution after total knee replacement. Anesth Analg 1999; 89: 1382–7

    PubMed  CAS  Google Scholar 

  51. Ekback G, Axelsson K, Ryttberg L, et al. Tranexamic acid reduces blood loss in total hip replacement surgery. Anesth Analg 2000; 91: 1124–30

    Article  PubMed  CAS  Google Scholar 

  52. Benoni G, Fredin H, Knebel R, et al. Blood conservation with tranexamic acid in total hip arthroplasty: a randomized, double-blind study in 40 primary operations. Acta Orthop Scand 2001; 72: 442–8

    Article  PubMed  CAS  Google Scholar 

  53. Hiippala S, Strid L, Wennerstrand M, et al. Tranexamic acid (Cyklokapron) reduces perioperative blood loss associated with total knee arthroplasty. Br J Anaesth 1995; 74: 534–7

    Article  PubMed  CAS  Google Scholar 

  54. Peters DC, Noble S. Aprotinin: an update of its pharmacology and therapeutic use in open heart surgery and coronary artery bypass surgery. Drugs 1999; 57: 233–60

    Article  PubMed  CAS  Google Scholar 

  55. Westaby S. Aprotinin in perspective. Ann Thorac Surg 1993; 55: 1033–41

    Article  PubMed  CAS  Google Scholar 

  56. Royston D, Bidstrup BP, Taylor KM, et al. Effect of aprotinin on need for blood transfusion after repeat open-heart surgery. Lancet 1987; II: 1289–91

    Article  Google Scholar 

  57. Nuttall GA, Fass DN, Oyen LJ, et al. A study of a weight-adjusted aprotinin dosing schedule during cardiac surgery. Anesth-Analg 2002; 2002 Feb; 94: 283–9

    PubMed  CAS  Google Scholar 

  58. Royston D. High-dose aprotinin therapy: a review of the first five years’ experience. J Cardiothorac Vasc Anesth 1992; 6: 76–100

    Article  PubMed  CAS  Google Scholar 

  59. Henry DA, Moxey AJ, Carless PA, et al. Antifibrinolytic use for minimising perioperative allogeneic blood transfusion. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 1. Oxford: Update Software 2001: CD001886

    Google Scholar 

  60. Ray MJ, Hales MM, Brown LO, et al. Postoperatively administered aprotinin or epsilon aminocaproic acid after cardiopulmonary bypass has limited benefit. Ann Thorac Surg 2001; 72: 521–6

    Article  PubMed  CAS  Google Scholar 

  61. Alvarez JM, Jackson LR, Chatwin C, et al. Low-dose postoperative aprotinin reduces mediastinal drainage and blood product use in patients undergoing primary coronary artery bypass grafting who are taking aspirin: a prospective, randomized, double-blind, placebo-controlled trial. J Thorac Cardiovasc Surg 2001; 122: 457–63

    Article  PubMed  CAS  Google Scholar 

  62. Westaby S, Katsumata T. Aprotinin and vein graft occlusion: the controversy continues. J Thorac Cardiovasc Surg 1998; 116: 731–3

    Article  PubMed  CAS  Google Scholar 

  63. Bidstrup BP, Underwood SR, Sapsford RN, et al. Effect of aprotinin (Trasylol) on aorta-coronary bypass graft patency. J Thorac Cardiovasc Surg 1993; 105: 147–52

    PubMed  CAS  Google Scholar 

  64. Alderman EL, Levy JH, Rich JB, et al. Analyses of coronary graft patency after aprotinin use: results from the International Multicenter Aprotinin Graft Patency Experience (IMAGE) trial. J Thorac Cardiovasc Surg 1998; 116: 716–30

    Article  PubMed  CAS  Google Scholar 

  65. Dietrich W, Dilthey G, Spannagl M, et al. Influence of highdose aprotinin on anticoagulation, heparin requirement, and celite- and kaolin-activated clotting time in heparin-pretreated patients undergoing open-heart surgery: a double-blind, placebo-controlled study. Anesthesiology 1995; 83: 679–89

    Article  PubMed  CAS  Google Scholar 

  66. Poullis M, Manning R, Laffan M, et al. The antithrombotic effect of aprotinin: actions mediated via the proteaseactivated receptor 1. J Thorac Cardiovasc Surg 2000; 120: 370–8

    Article  PubMed  CAS  Google Scholar 

  67. Murkin JM. Attenuation of neurologic injury during cardiac surgery. Ann Thorac Surg 2001; 72: S1838–44

    Article  PubMed  CAS  Google Scholar 

  68. Kyriss T, Wurst H, Friedel G, et al. Reduced blood loss by aprotinin in thoracic surgical operations associated with high risk of bleeding. A placebo-controlled, randomized phase IV study. Eur J Cardiothorac Surg 2001; 20: 38–41

    CAS  Google Scholar 

  69. Bedirhan MA, Turna A, Yagan N, et al. Aprotinin reduces postoperative bleeding and the need for blood products in thoracic surgery: results of a randomized double-blind study. Eur J Cardiothorac Surg 2001; 20: 1122–7

    Article  PubMed  CAS  Google Scholar 

  70. Gu YJ, de Haan J, Brenken UP, et al. Clotting and fibrinolytic disturbance during lung transplantation: effect of low-dose aprotinin. J Thorac Cardiovasc Surg 1996; 112: 599–606

    Article  PubMed  CAS  Google Scholar 

  71. Kesten S, de Hoyas A, Chaparro C, et al. Aprotinin reduces blood loss in lung transplant recipients. Ann Thorac Surg 1995; 59: 877–9

    Article  PubMed  CAS  Google Scholar 

  72. Neuhaus P, Bechstein WO, Lefebre B, et al. Effect of aprotinin on intraoperative bleeding and fibrinolysis in liver transplantation. Lancet 1989; II: 924–5

    Article  Google Scholar 

  73. Garcia Huete L, Domenech P, Sabate A, et al. The prophylactic effect of aprotinin on intraoperative bleeding in liver transplantation: a randomized clinical study. Hepatology 1997; 26: 1143–8

    Article  PubMed  CAS  Google Scholar 

  74. Porte RJ, Molenaar IQ, Begliomini B, et al. Aprotinin and transfusion requirements in orthotopic liver transplantation: a multicentre randomised double-blind study. Lancet 2000; 355: 1303–9

    Article  PubMed  CAS  Google Scholar 

  75. Findlay JY, Rettke SR, Ereth MH, et al. Aprotinin reduces red blood cell transfusion in orthotopic liver transplantation: a prospective, randomized, double-blind study. Liver Transpl 2001; 7: 802–7

    Article  PubMed  CAS  Google Scholar 

  76. Molenaar IQ, Begliomini B, Martinelli G, et al. Reduced need for vasopressors in patients receiving aprotinin during orthotopic liver transplantation. Anesthesiology 2001; 94: 433–8

    Article  PubMed  CAS  Google Scholar 

  77. Molenaar IQ, Begliomini B, Grazi GL, et al. The effect of aprotinin on renal function in orthotopic liver transplantation. Transplantation 2001; 71: 247–52

    Article  PubMed  CAS  Google Scholar 

  78. Fitzsimons MG, Peterfreund RA, Raines DE. Aprotinin administration and pulmonary thromboembolism during orthotopic liver transplantation: report of two cases. Anesth Analg 2001; 92: 1418–21

    Article  PubMed  CAS  Google Scholar 

  79. Molenaar IQ, Legnani C, Groenland THN, et al. Aprotinin in orthotopic liver transplantation: evidence for a prohemostatic, but not a prothrombotic, effect. Liver Transplant 2001; 10: 896–903

    Article  Google Scholar 

  80. Lentschener C, Cottin P, Bouaziz H, et al. Reduction of blood loss and transfusion requirement by aprotinin in posterior lumbar spine fusion. Anesth Analg 1999; 89: 590–7

    PubMed  CAS  Google Scholar 

  81. Murkin JM, Shannon NA, Bourne RB, et al. Aprotinin decreases blood loss in patients undergoing revision or bilateral total hip arthroplasty. Anesth Analg 1995; 80: 343–8

    PubMed  CAS  Google Scholar 

  82. Murkin JM, Haig GM, Beer KJ, et al. Aprotinin decreases exposure to allogeneic blood during primary unilateral total hip replacement. J Bone Joint Surg Am 2000; 82: 675–84

    PubMed  CAS  Google Scholar 

  83. Samama CM, Langeron O, Rosencher N, et al. Aprotinin versus placebo in major orthopedic surgery: a randomized, double-blinded, dose-ranging study. Anesth Analg 2002; 95: 287–93

    PubMed  CAS  Google Scholar 

  84. Capdevila X, Calvet Y, Biboulet P, et al. Aprotinin decreases blood loss and homologous transfusions in patients undergoing major orthopedic surgery. Anesthesiology 1998; 88: 50–7

    Article  PubMed  CAS  Google Scholar 

  85. Thompson JF, Roath OS, Francis JL, et al. Aprotinin in peripheral vascular surgery [letter]. Lancet 1990; 335: 911

    Article  PubMed  CAS  Google Scholar 

  86. Lentschener C, Benhamou D, Mercier FJ, et al. Aprotinin reduces blood loss in patients undergoing elective liver resection. Anesth Analg 1997; 84: 875–81

    PubMed  CAS  Google Scholar 

  87. Stewart A, Newman L, Sneddon K, et al. Aprotinin reduces blood loss and the need for transfusion in orthognathic surgery. Br J Oral Maxillofac Surg 2001; 39: 365–70

    Article  PubMed  CAS  Google Scholar 

  88. Sato T, Tanaka K, Kondo C, et al. Nafamostat mesilate administration during cardiopulmonary bypass decreases postoperative bleeding after cardiac surgery. ASAIO Trans 1991; 37: M194–5

    PubMed  CAS  Google Scholar 

  89. Miyamoto Y, Nakano S, Kaneko M, et al. Clinical evaluation of a new synthetic protease inhibitor in open heart surgery: effect on plasma serotonin and histamine release and blood conservation. ASAIO J 1992; 38: M395–8

    Article  PubMed  CAS  Google Scholar 

  90. Tanaka K, Kondo C, Takagi K, et al. Effects of nafamostat mesilate on platelets and coagulofibrinolysis during cardiopulmonary bypass surgery. ASAIO J 1993; 39: M545–9

    Article  PubMed  CAS  Google Scholar 

  91. Murase M, Usui A, Tomita Y, et al. Nafamostat mesilate reduces blood loss during open heart surgery. Circulation 1993; 88: II432–6

    PubMed  CAS  Google Scholar 

  92. Shimada M, Matsumata T, Shirabe K, et al. Effect of nafamostat mesilate on coagulation and fibrinolysis in hepatic resection. J Am Coll Surg 1994; 178: 498–502

    PubMed  CAS  Google Scholar 

  93. Mannucci PM. Hemostatic drugs. N Engl J Med 1998; 339: 245–53

    Article  PubMed  CAS  Google Scholar 

  94. Shepherd LL, Hutchinson RJ, Worden EK, et al. Hyponatremia and seizures after intravenous administration of desmopressin acetate for surgical hemostasis. J Pediatr 1989; 114: 470–2

    Article  PubMed  CAS  Google Scholar 

  95. Dantzig JMv, Duren DR, Ten Cate JW. Desmopressin and myocardial infarction. Lancet 1989; I: 664–5

    Google Scholar 

  96. Mannucci PM, Ruggeri ZM, Pareti FI, et al. 1-Deamino-8-d-arginine vasopressin: a new pharmacological approach to the management of haemophilia and von Willebrands’ diseases. Lancet 1977; I: 869–72

    Article  Google Scholar 

  97. Gratz I, Koehler J, Olsen D, et al. The effect of desmopressin acetate on postoperative hemorrhage in patients receiving aspirin therapy before coronary artery bypass operations. J Thorac Cardiovasc Surg 1992; 104: 1417–22

    PubMed  CAS  Google Scholar 

  98. Dilthey G, Dietrich W, Spannagl M, et al. Influence of desmopressin acetate on homologous blood requirements in cardiac surgical patients pretreated with aspirin. J Cardiothorac Vasc Anesth 1993; 7: 425–30

    Article  PubMed  CAS  Google Scholar 

  99. Sheridan DP, Card RT, Pinilla JC, et al. Use of desmopressin acetate to reduce blood transfusion requirements during cardiac surgery in patients with acetylsalicylic-acid-induced platelet dysfunction. Can J Surg 1994; 37: 33–6

    PubMed  CAS  Google Scholar 

  100. Salzman EW, Weinstein MJ, Weintraub RM, et al. Treatment with desmopressin acetate to reduce blood loss after cardiac surgery: a double-blind randomized trial. N Engl J Med 1986; 314: 1402–6

    Article  PubMed  CAS  Google Scholar 

  101. Rocha E, Llorens R, Paramo JA, et al. Does desmopressin acetate reduce blood loss after surgery in patients on cardiopulmonary bypass? Circulation 1988; 77: 1319–23

    Article  PubMed  CAS  Google Scholar 

  102. Hackmann T, Gascoyne RD, Naiman SC, et al. A trial of desmopressin (1-desamino-8-D-arginine vasopressin) to reduce blood loss in uncomplicated cardiac surgery. N Engl J Med 1989; 321: 1437–43

    Article  PubMed  CAS  Google Scholar 

  103. Ansell J, Klassen V, Lew R, et al. Does desmopressin acetate prophylaxis reduce blood loss after valvular heart operations?.: a randomized, double-blind study. J Thorac Cardiovasc Surg 1992; 104: 117–23

    PubMed  CAS  Google Scholar 

  104. Ozkisacik E, Islamoglu F, Posacioglu H, et al. Desmopressin usage in elective cardiac surgery. J Cardiovasc Surg 2001; 42: 741–7

    CAS  Google Scholar 

  105. Despotis GJ, Levine V, Saleem R, et al. Use of point-of-care test in identification of patients who can benefit from desmopressin during cardiac surgery: a randomised controlled trial. Lancet 1999; 354: 106–10

    Article  PubMed  CAS  Google Scholar 

  106. Oliver WCJ, Santrach PJ, Danielson GK, et al. Desmopressin does not reduce bleeding and transfusion requirements in congenital heart operations. Ann Thorac Surg 2000; 70: 1923–30

    Article  PubMed  Google Scholar 

  107. Alanay A, Acaroglu E, Ozdemir O, et al. Effects of deamino-8-D-arginin vasopressin on blood loss and coagulation factors in scoliosis surgery: a double-blind randomized clinical trial. Spine 1999; 24: 877–82

    Article  PubMed  CAS  Google Scholar 

  108. Flordal PA, Ljungstrom KG, Ekman B, et al. Effects of desmopressin on blood loss in hip arthroplasty: controlled study in 50 patients. Acta Orthop Scand 1992; 63: 381–5

    Article  PubMed  CAS  Google Scholar 

  109. Karnezis TA, Stulberg SD, Wixson RL, et al. The hemostatic effects of desmopressin on patients who had total joint arthroplasty: a double-blind randomized trial. J Bone Joint Surg Am 1994; 76: 1545–50

    PubMed  CAS  Google Scholar 

  110. Lethagen S, Rugarn P, Bergqvist D. Blood loss and safety with desmopressin or placebo during aorto-iliac graft surgery. Eur J Vasc Surg 1991; 5: 173–8

    Article  PubMed  CAS  Google Scholar 

  111. Clagett GP, Valentine RJ, Myers SI, et al. Does desmopressin improve hemostasis and reduce blood loss from aortic surgery?.: a randomized, double-blind study. J Vasc Surg 1995; 22: 223–9

    Article  PubMed  CAS  Google Scholar 

  112. Kobrinsky NL, Letts RM, Patel LR, et al. 1-Desamino-8-D-arginine vasopressin (desmopressin) decreases operative blood loss in patients having Harrington rod spinal fusion surgery: a randomized, double-blinded, controlled trial. Ann Intern Med 1987; 107: 446–50

    PubMed  CAS  Google Scholar 

  113. Hoffman M, Monroe DM, Oliver JA, et al. Factors IXa and Xa play distinct roles in tissue factor-dependent initiation of coagulation. Blood 1995; 86: 1794–801

    PubMed  CAS  Google Scholar 

  114. Poon MC, Demers C, Jobin F, et al. Recombinant factor VIIa is effective for bleeding and surgery in patients with Glanzmann thrombasthenia. Blood 1999; 94: 3951–3

    PubMed  CAS  Google Scholar 

  115. Shapiro AD, Gilchrist GS, Hoots WK, et al. Prospective, randomised trial of two doses of rFVIIa (NovoSeven) in haemophilia patients with inhibitors undergoing surgery. Thromb Haemost 1998; 80: 773–8

    PubMed  CAS  Google Scholar 

  116. Varon D, Martinowitz U. Continuous infusion therapy in haemophilia. Haemophilia 1998; 4: 431–5

    Article  PubMed  CAS  Google Scholar 

  117. Santagostino E, Morfini M, Rocino A, et al. Relationship between factor VII activity and clinical efficacy of recombinant factor VIIa given by continuous infusion to patients with factor VIII inhibitors. Thromb Haemost 2001; 86: 954–8

    PubMed  CAS  Google Scholar 

  118. Smith MP, Ludlam CA, Collins PW, et al. Elective surgery on factor VIII inhibitor patients using continuous infusion of recombinant activated factor VII: plasma factor VII activity of 10 IU/ml is associated with an increased incidence of bleeding. Thromb Haemost 2001; 86: 949–53

    PubMed  CAS  Google Scholar 

  119. Mauser-Bunschoten EP, Koopman MMW, de Goede-Bolder A, et al. Efficacy of recombinant factor VIIa administered by continuous infusion to haemophilia patients with inhibitors. Haemophilia 2002; 8: 649–56

    Article  PubMed  CAS  Google Scholar 

  120. Ewenstein BM. Continuous infusion of recombinant factor VIIa: continue or not? Thromb Haemost 2001; 86: 942–4

    PubMed  CAS  Google Scholar 

  121. Peerlinck K, Vermylen J. Acute myocardial infarction following administration of recombinant activated factor VII (Novo Seven) in a patient with haemophilia A and inhibitor. Thromb Haemost 1999; 82: 1775–6

    PubMed  CAS  Google Scholar 

  122. Ingerslev J, Kristensen HL. Clinical picture and treatment strategies in factor VII deficiency. Haemophilia 1998; 4: 689–96

    Article  PubMed  CAS  Google Scholar 

  123. Kristensen J, Killander A, Hippe E, et al. Clinical experience with recombinant factor VIIa in patients with thrombocytopenia. Haemostasis 1996; 26: 1159–64

    Google Scholar 

  124. Friederich PW, Wever PC, Briet E, et al. Successful treatment with recombinant factor VIIa of therapy-resistant severe bleeding in a patient with acquired von Willebrand disease. Am J Hematol 2001; 66: 292–4

    Article  PubMed  CAS  Google Scholar 

  125. Revesz T, Arets B, Bierings M, et al. Recombinant factor VIIa in severe uremic bleeding [letter]. Thromb Haemost 1998; 80: 353

    PubMed  CAS  Google Scholar 

  126. Chuansumrit A, Treepongkaruna S, Phuapradit P. Combined fresh frozen plasma with recombinant factor VIIa in restoring hemostasis for invasive procedures in children with liver diseases. Thromb Haemost 2001; 85: 748–9

    PubMed  CAS  Google Scholar 

  127. Hendriks HG, Meijer K, de Wolf JT, et al. Reduced transfusion requirements by recombinant factor VIIa in orthotopic liver transplantation. Transplantation 2001; 71: 402–5

    Article  PubMed  CAS  Google Scholar 

  128. Jeffers L, Chalasani N, Balart L, et al. Safety and efficacy of recombinant factor VIIa in patients with liver disease undergoing laparoscopic liver biopsy. Gastroenterology 2002; 123: 118–26

    Article  PubMed  CAS  Google Scholar 

  129. Bernstein DE, Jeffers L, Erhardtsen E, et al. Recombinant factor VIIa corrects prothrombin time in cirrhotic patients: a preliminary study. Gastroenterology 1997; 113: 1930–7

    Article  PubMed  CAS  Google Scholar 

  130. Planinsic RM, Testa G, Emre S, et al. Use of NovoSeven in patients undergoing orthotopic liver transplantation. Proceedings of the 6th NovoNordisk Symposium on the Treatment of Bleeding and Thrombotic Disorders; 2001 May; Copenhagen, Denmark, 5

  131. Friederich PW, Henny CP, Messelink EJ, et al. Reduction of perioperative blood loss and transfusion requirement in patients undergoing transabdominal retropubic prostatectomy by administration of recombinant activated factor VII [abstract P2613]. Thromb Haemost 2001; CD ROM suppl.

  132. White B, McHale J, Ravi N, et al. Successful use of recombinant FVIIa (Novoseven) in the management of intractable post-surgical intra-abdominal haemorrhage. Br J Haematol 1999; 107: 677–8

    Article  PubMed  CAS  Google Scholar 

  133. Vlot AJ, Ton E, Mackaay AJ, et al. Treatment of a severely bleeding patient without preexisting coagulopathy with activated recombinant factor VII. Am J Med 2000; 108: 421–3

    Article  PubMed  CAS  Google Scholar 

  134. Hendriks HG, van der Maaten JM, de Wolf J, et al. An effective treatment of severe intractable bleeding after valve repair by one single dose of activated recombinant factor VII. Anesth Analg 2001; 93: 287–9

    PubMed  CAS  Google Scholar 

  135. Frenette L, Cox J, McArdle P, et al. Conjugated estrogen reduces transfusion and coagulation factor requirements in orthotopic liver transplantation. Anesth Analg 1998; 86: 1183–6

    PubMed  CAS  Google Scholar 

  136. Malpass TW, Amory DW, Harker LA, et al. The effect of prostacyclin infusion on platelet hemostatic function in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 1984; 87: 550–5

    PubMed  CAS  Google Scholar 

  137. DiSesa VJ, Huval W, Lelcuk S, et al. Disadvantages of prostacyclin infusion during cardiopulmonary bypass: a double-blind study of 50 patients having coronary revascularization. Ann Thorac Surg 1984; 38: 514–9

    Article  PubMed  CAS  Google Scholar 

  138. Fish KJ, Sarnquist FH, van-Steennis C, et al. A prospective, randomized study of the effects of prostacyclin on platelets and blood loss during coronary bypass operations. J Thorac Cardiovasc Surg 1986; 91: 436–42

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Porte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porte, R.J., Leebeek, F.W.G. Pharmacological Strategies to Decrease Transfusion Requirements in Patients Undergoing Surgery. Drugs 62, 2193–2211 (2002). https://doi.org/10.2165/00003495-200262150-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200262150-00003

Keywords

Navigation