Skip to main content
Log in

The Role of Sulphonylureas in the Management of Type 2 Diabetes Mellitus

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The sulphonylureas act by triggering insulin release from the pancreatic β cell. A specific site on the adenosine triphosphate (ATP)-sensitive potassium channels is occupied by sulphonylureas leading to closure of the potassium channels and subsequent opening of calcium channels. This results in exocytosis of insulin. The meglitinides are not sulphonylureas but also occupy the sulphonylurea receptor unit coupled to the ATP-sensitive potassium channel.

Glibenclamide (glyburide), gliclazide, glipizide and glimepiride are the primary sulphonylureas in current clinical use for type 2 diabetes mellitus. Glibenclamide has a higher frequency of hypoglycaemia than the other agents. With long-term use, there is a progressive decrease in the effectiveness of sulphonylureas. This loss of effect is the result of a reduction in insulin-producing capacity by the pancreatic β cell and is also seen with other antihyperglycaemic agents.

The major adverse effect of sulphonylureas is hypoglycaemia. There is a theoretical concern that sulphonylureas may affect cardiac potassium channels resulting in a diminished response to ischaemia.

There are now many choices for initial therapy of type 2 diabetes in addition to sulphonylureas. Metformin and thiazolidinediones affect insulin sensitivity by independent mechanisms. Disaccharidase inhibitors reduce rapid carbohydrate absorption. No single agent appears capable of achieving target glucose levels in the majority of patients with type 2 diabetes. Combinations of agents are successful in lowering glycosylated haemoglobin levels more than with a single agent. Sulphonylureas are particularly beneficial when combined with agents such as metformin that decrease insulin resistance. Sulphonylureas can also be given with a basal insulin injection to provide enhanced endogenous insulin secretion after meals. Sulphonylureas will continue to be used both primarily and as part of combined therapy for most patients with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Loubatieres A. The hypoglycemic sulfonamides: history and development of the problem from 1942 to 1955. Ann N Y Acad Sci 1957; 71: 4–11

    Article  PubMed  CAS  Google Scholar 

  2. Gotfredsen CF. Dynamics of sulfonylurea-induced insulin release from the isolated perfused rat pancreas. Diabetologia 1976; 12: 339–42

    Article  PubMed  CAS  Google Scholar 

  3. Kolterman OG, Olefsky JM. The impact of sulfonylurea treatment upon the mechanisms responsible for the insulin resistance in type II diabetes. Diabetes Care 1984; 7 Suppl. 1: 81–8

    PubMed  CAS  Google Scholar 

  4. Schwanstecher M, Sieverding C, Dorschner H, et al. Potassium channel openers require ATP to bind to and act through sulfonylurea receptors. EMBO J 1998; 17: 5529–35

    Article  PubMed  CAS  Google Scholar 

  5. Dorschner H, Brekardin E, Uhde I, et al. Stoichiometry of sulfonylurea-induced ATP-sensitive potassium channel closure. Mol Pharmacol 1999; 55: 1060–6

    PubMed  CAS  Google Scholar 

  6. Aguilar-Bryan L, Bryan J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 1999; 20: 101–35

    Article  PubMed  CAS  Google Scholar 

  7. John SA, Weiss JN, Ribalet B. Regulation of cloned ATP-sensitive K channels by adenine nucleotides and sulfonylureas: interactions between SUR1 and positively charged domains on Kir6. 2. J Gen Physiol 2001; 118: 391–405

    Article  CAS  Google Scholar 

  8. Bryan J, Aguilar-Bryan L. Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K+ channels. Biochim Biophys Acta 1999; 1461: 285–303

    Article  PubMed  CAS  Google Scholar 

  9. Sunaga Y, Gonoi T, Shibasaki T, et al. The effects of mitiglinide (KAD-1229), a new anti-diabetic drug, on ATP-sensitive K+ channels and insulin secretion: comparison with the sulfonylureas and nateglinide. Eur J Pharmacol 2001; 431: 119–25

    Article  PubMed  CAS  Google Scholar 

  10. Loffler-Walz C, Hambrock A, Quast U. Interaction of K(ATP) channel modulators with sulfonylurea receptor SUR2B: implication for tetramer formation and allosteric coupling of subunits. Mol Pharmacol 2002; 61: 407–14

    Article  PubMed  CAS  Google Scholar 

  11. Sim JH, Yang DK, Kim YC, et al. ATP-sensitive K(+) channels composed of Kir6.1 and SUR2B subunits in guinea pig gastric myocytes. Am J Physiol Gastrointest Liver Physiol 2002; 282: G137–44

    PubMed  CAS  Google Scholar 

  12. Taguchi T, Suita S, Ohkubo K, et al. Mutations in the sulfonylurea receptor gene in relation to the long-term outcome of persistent hyperinsulinemic hypoglycemia of infancy. J Pediatr Surg 2002; 37: 593–8

    Article  PubMed  Google Scholar 

  13. Grimberg A, Ferry Jr RJ, Kelly A, et al. Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes 2001; 50: 322–8

    Article  PubMed  CAS  Google Scholar 

  14. Huopio H, Vauhkonen I, Komulainen J, et al. Carriers of an inactivating beta-cell ATP-sensitive K(+) channel mutation have normal glucose tolerance and insulin sensitivity and appropriate insulin secretion. Diabetes Care 2002; 25: 101–6

    Article  PubMed  CAS  Google Scholar 

  15. McCaleb ML, Maloff BL, Nowak SM, et al. Sulfonylurea effects on target tissues for insulin. Diabetes Care 1984; 7 Suppl. 1: 42–6

    Article  PubMed  CAS  Google Scholar 

  16. Keller U, Muller R, Berger W. Sulfonylurea therapy fails to diminish insulin resistance in type I-diabetic subjects. Horm Metab Res 1986; 18: 599–603

    Article  PubMed  CAS  Google Scholar 

  17. da Tos V, Maran A, Vigili de Kreutzenberg S, et al. Mechanisms of acute and chronic hypoglycemic action of gliclazide. Acta Diabetol 2000; 37: 201–6

    Article  PubMed  Google Scholar 

  18. Müller G, Satoh Y, Geisen K. Extrapancreatic effects of sulfonylureas: a comparison between glimepiride and conventional sulfonylureas. Diabetes Res Clin Pract 1995; 28 Suppl. 1: S115–37

    Article  PubMed  Google Scholar 

  19. Müller G, Wied S. The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 1993; 42: 1852–67

    Article  PubMed  Google Scholar 

  20. Bahr M, von Holtey M, Muller G, et al. Direct stimulation of myocardial glucose transport and glucose transporter-1 (GLUT1) and GLUT4 protein expression by the sulfonylurea glimepiride. Endocrinology 1995; 136: 2547–53

    Article  PubMed  CAS  Google Scholar 

  21. Landstedt-Hallin L, Adamson U, Lins PE. Oral glibenclamide suppresses glucagon secretion during insulin-induced hypoglycemia in patients with type 2 diabetes. J Clin Endocrinol Metab 1999; 84: 3140–5

    Article  PubMed  CAS  Google Scholar 

  22. Cejvan K, Coy DH, Holst JJ, et al. Gliclazide directly inhibits arginine-induced glucagon release. Diabetes 2002; 51 Suppl. 3: S381–4

    Article  PubMed  CAS  Google Scholar 

  23. ter Braak EW, Appelman AM, van der Tweel I, et al. The sulfonylurea glibenclamide induces impairment of glucagon and growth hormone responses during mild insulin-induced hypoglycemia. Diabetes Care 2002; 25: 107–12

    Article  PubMed  CAS  Google Scholar 

  24. Groop LC. Sulfonylureas in NIDDM. Diabetes Care 1992; 15: 737–54

    Article  PubMed  CAS  Google Scholar 

  25. Melander A, Bitzen PO, Faber O, et al. Sulphonylurea anti-diabetic drugs, an update of their clinical pharmacology and rational therapeutic use. Drugs 1989; 37: 58–72

    Article  PubMed  CAS  Google Scholar 

  26. Prendergast BD. Glibenclamide and glipizide, second-generation oral sulfonylurea hypoglycemic agents. Clin Pharm 1984; 3: 473–85

    PubMed  CAS  Google Scholar 

  27. Kennedy DL, Piper JM, Baum C. Trends in the use of oral hypoglycemic agents, 1964–1986. Diabetes Care 1988; 11: 558–62

    Article  PubMed  CAS  Google Scholar 

  28. Langtry HD, Balfour JA. Glimepiride: a review of its use in the management of type 2 diabetes mellitus. Drugs 1998; 55: 563–84

    Article  PubMed  CAS  Google Scholar 

  29. Rosenstock J, Samols E, Muchmore DB, et al. Glimepiride, a new once daily sulfonylurea: a double-blind placebo-controlled study of NIDDM patients. Diabetes Care 1996; 19: 1194–9

    Article  PubMed  CAS  Google Scholar 

  30. Ylitalo P, Oksala H, Pitkajarvi T. Comparison of acute and prolonged effects of glibenclamide and chlorpropamide in patients with non-insulin-dependent diabetes. Arzneimittelforschung 1985; 35: 1596–9

    PubMed  CAS  Google Scholar 

  31. Matz R. Hyponatremia and sulfonylureas. Diabetes Care 1984; 7: 201–2

    PubMed  CAS  Google Scholar 

  32. Skillman TG, Feldman JM. The pharmacology of sulfonylureas. Am J Med 1981; 70: 361–72

    Article  PubMed  CAS  Google Scholar 

  33. Berger W. Incidence of severe side effects during therapy with sulfonylureas and biguanides. Horm Metab Res Suppl 1985; 15: 111–5

    PubMed  CAS  Google Scholar 

  34. Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf 1994; 11: 223–41

    Article  PubMed  CAS  Google Scholar 

  35. Burge MR, Zeise TM, Sobhy TA, et al. Low-dose ethanol predisposes elderly fasted patients with type 2 diabetes to sulfonylurea-induced low blood glucose. Diabetes Care 1999; 22: 2037–43

    Article  PubMed  CAS  Google Scholar 

  36. Lao B, Czyzyk A, Szutowski M, et al. Alcohol tolerance in patients with non-insulin-dependent (type 2) diabetes treated with honylurea derivatives. Arzneimittelforschung 1994; 44: 727–34

    PubMed  CAS  Google Scholar 

  37. Harrower AD. Comparative tolerability of sulphonylureas in diabetes mellitus. Drug Saf 2000; 22: 313–20

    Article  PubMed  CAS  Google Scholar 

  38. Feldman JM. Glibenclamide: a second-generation sulfonylurea hypoglycemic agent. Pharmacotherapy 1985; 5: 43–62

    PubMed  CAS  Google Scholar 

  39. Pearson JG. Pharmacokinetics of glibenclamide. Am J Med 1985; 79 Suppl. 3B: 67–71

    Article  PubMed  CAS  Google Scholar 

  40. Coppack SW, Lant AF, Mclntosh CS, et al. Pharmacokinetics and pharmacodynamics studies of glibenclamide in non-insulin dependent diabetes mellitus. Br J Clin Pharmacol 1990; 29: 673–84

    Article  PubMed  CAS  Google Scholar 

  41. El-Sayed YM, Suleiman MS, Hasan MM, et al. Comparison of the pharmacokinetics and pharmacodynamics of two commercial products containing glibenclamide. Int J Clin Pharmacol Ther Toxicol 1989; 27: 551–7

    PubMed  CAS  Google Scholar 

  42. Neuvonen PJ, Kivisto KT. The effects of magnesium hydroxide on the absorption and efficacy of two glibenclamide preparations. Br J Clin Pharmacol 1991; 32: 215–20

    Article  PubMed  CAS  Google Scholar 

  43. Ings RMJ, Lawerence JR, McDonald A, et al. Glibenclamide pharmacokinetics in healthy volunteers: evidence for zero-order drug absorption. Br J Clin Pharmacol 1981; 13: 264P-5P

    Google Scholar 

  44. Jonsson A, Rydberg T, Ekberg G, et al. Slow elimination of glibenclamide in NIDDM subjects. Diabetes Care 1994; 17: 142–5

    Article  PubMed  CAS  Google Scholar 

  45. Rydberg T, Jonsson A, Karlsson MO, et al. Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 1997; 43: 373–81

    Article  PubMed  CAS  Google Scholar 

  46. Jonsson A, Hallengren B, Rydberg T, et al. Effects and serum levels of glibenclamide and its active metabolites in patients with type 2 diabetes. Diabetes Obes Metab 2001; 3: 403–9

    Article  PubMed  CAS  Google Scholar 

  47. Pearson JG, Antal EJ, Raehl CL, et al. Pharmacokinetic disposition of C14-glibenclamide in patients with varying renal function. Clin Pharmacol Ther 1986; 39: 318–24

    Article  PubMed  CAS  Google Scholar 

  48. Wan Mohamad WB, Tun Fizi A, Ismail RB, et al. Efficacy and safety of single versus multiple daily doses of glibenclamide in type 2 diabetes mellitus. Diabetes Res Clin Pract 2000; 49: 93–9

    Article  PubMed  CAS  Google Scholar 

  49. Jonsson A, Chan JC, Rydberg T, et al. Pharmacodynamics and pharmacokinetics of intravenous glibenclamide in Caucasian and Chinese patients with type-2 diabetes. Eur J Clin Pharmacol 2000; 55: 721–7

    Article  PubMed  CAS  Google Scholar 

  50. Kobayashi K, Kimura M, Sakoguchi T, et al. Influence of blood proteins on biomedical analysis: III. pharmacokinetics and protein binding of gliclazide. J Pharmacobiodyn 1981; 4: 436–42

    CAS  Google Scholar 

  51. Davis TME, Daly F, Walsh JP, et al. Pharmacokinetics and pharmacodynamics of gliclazide in Caucasians and Australian Aborigines with type 2 diabetes. Br J Clin Pharmacol 2000; 49: 223–30

    Article  PubMed  CAS  Google Scholar 

  52. Fujii T, Nakamura K, Furukawa H, et al. Drug interactions of gliclazide and other sulfonylureas in protein binding in vitro and in hypoglycemic effect in rats. Arzneimittelforschung 1983; 33: 1535–7

    PubMed  CAS  Google Scholar 

  53. Abad S, Moachon L, Blanche P, et al. Possible interaction between gliclazide, fluconazole and sulfamethoxazole resulting in severe hypoglycaemia. Br J Clin Pharmacol 2001; 52: 456–7

    Article  PubMed  CAS  Google Scholar 

  54. Park JY, Kim KA, Park PW, et al. Effect of rifampin on the pharmacokinetics and pharmacodynamics of gliclazide. Clin Pharmacol Ther 2003; 74: 334–40

    Article  PubMed  CAS  Google Scholar 

  55. Diamicron prescribing information. Slough: Servier Laboratories, 1997

  56. Pentikainen PJ, Neuvonen PJ, Penttila A. Pharmacokinetics and pharmacodynamics of glipizide in healthy volunteers. Int J Clin Pharmacol Ther Toxicol 1983; 21: 98–107

    PubMed  CAS  Google Scholar 

  57. Kradjan WA, Takeuchi KY, Opheim KE, et al. Pharmacokinetics and pharmacodynamics of glipizide after once-daily and divided doses. Pharmacotherapy 1995; 15: 465–71

    PubMed  CAS  Google Scholar 

  58. Lebovitz HE. Glipizide: a second-generation sulfonylurea hypoglycemic agent: pharmacology, pharmacokinetics and clinical use. Pharmacotherapy 1985; 5: 63–77

    PubMed  CAS  Google Scholar 

  59. Melander A, Wahlin-Boll E. Clinical pharmacology of glipizide. Am J Med 1983; 75: 41–5

    Article  PubMed  CAS  Google Scholar 

  60. Kradjan WA, Kobayashi KA, Bauer LA, et al. Glipizide pharmacokinetics: effects of age, diabetes, and multiple dosing. J Clin Pharmacol 1989; 29: 1121–7

    PubMed  CAS  Google Scholar 

  61. Kobayashi KA, Bauer LA, Horn JR, et al. Glipizide pharmacokinetics in young and elderly volunteers. Clin Pharm 1988; 7: 224–8

    PubMed  CAS  Google Scholar 

  62. Niemi M, Cascorbi I, Timm R, et al. Glibenclamide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 2002; 72: 326–32

    Article  PubMed  CAS  Google Scholar 

  63. Ahren B, Lundquist I, Schersten B. Effects of glipizide on various consecutive insulin secretory stimulations in patients with type 2 diabetes. Diabetes Res 1986; 3: 293–300

    PubMed  CAS  Google Scholar 

  64. Bitzen PO, Melander A, Schersten B, et al. Long-term effects of glipizide on insulin secretion and blood glucose control in patients with non-insulin-dependent diabetes mellitus. Eur J Clin Pharmacol 1992; 42: 77–83

    Article  PubMed  CAS  Google Scholar 

  65. Jaber LA, Ducharme MP, Edwards DJ, et al. The influence of multiple dosing and age on the pharmacokinetics and pharmacodynamics of glipizide in patients with type II diabetes mellitus. Pharmacotherapy 1996; 16: 760–8

    PubMed  CAS  Google Scholar 

  66. Hartling SG, Faber OK, Wegmann ML, et al. Interaction of ethanol and glipizide in humans. Diabetes Care 1987; 10: 683–6

    Article  PubMed  CAS  Google Scholar 

  67. Johnson JF, Dobmeier ME. Symptomatic hypoglycemia secondary to a glipizide-trimethoprim/sulfamethoxazole drug interaction. DICP 1990; 24: 250–1

    PubMed  CAS  Google Scholar 

  68. Kivisto KT, Neuvonen PJ. Enhancement of absorption and effect of glipizide by magnesium hydroxide. Clin Pharmacol Ther 1991; 49: 39–43

    Article  PubMed  CAS  Google Scholar 

  69. Feely J, Collins WC, Cullen M, et al. Potentiation of the hypoglycaemic response to glipizide in diabetic patients by histamine H2-receptor antagonists. Br J Clin Pharmacol 1993; 35: 321–3

    Article  PubMed  CAS  Google Scholar 

  70. Glucotrol prescribing information. New York: Pfizer, 2000

  71. Kramer W, Müller G, Geisen K. Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at beta-cells. Horm Metab Res 1996; 28: 464–8

    Article  PubMed  CAS  Google Scholar 

  72. Ratheiser K, Korn A, Waldhausl W, et al. Dose relationship of stimulated insulin production following intravenous application of glimepiride in healthy man. Arzneimittelforschung 1993; 43: 856–8

    PubMed  CAS  Google Scholar 

  73. Singh J, Unnikrishnan AG, Agrawal NK, et al. Immunoreactive insulin response to a single dose of glimepiride in lean type 2 diabetic subjects. J Assoc Physicians India 2002; 50: 1232–5

    PubMed  CAS  Google Scholar 

  74. van der Wal PS, Draeger KE, van Iperen AM, et al. Beta cell response to oral glimepiride administration during and following a hyperglycaemic clamp in NIDDM patients. Diabet Med 1997; 14: 556–63

    Article  PubMed  Google Scholar 

  75. Gregorio F, Ambrosi F, Cristallini S, et al. Effects of glimepiride on insulin and glucagon release from isolated rat pancreas at different glucose concentrations. Acta Diabetol 1996; 33: 25–9

    Article  PubMed  CAS  Google Scholar 

  76. Korytkowski M, Thomas A, Reid L, et al. Glimepiride improves both first and second phases of insulin secretion in type 2 diabetes. Diabetes Care 2002; 25: 1607–11

    Article  PubMed  CAS  Google Scholar 

  77. Sato J, Ohsawa I, Oshida Y, et al. Comparison of the effects of three sulfonylureas on in vivo insulin action. Arzneimittelfor-schung 2001; 51: 459–64

    CAS  Google Scholar 

  78. Muller G. The molecular mechanism of the insulin-mimetic/ sensitizing activity of the antidiabetic sulfonylurea drug Amaryl. Mol Med 2000; 6: 907–33

    PubMed  CAS  Google Scholar 

  79. Badian M, Korn A, Lehr KH, et al. Absolute bioavailability of glimepiride (Amaryl) after oral administration. Drug Metabol Drug Interact 1994; 11: 331–9

    Article  PubMed  CAS  Google Scholar 

  80. Badian M, Korn A, Lehr KH, et al. Pharmacokinetics and pharmacodynamics of the hydroxymetabolite of glimepiride (Amaryl) after intravenous administration. Drug Metabol Drug Interact 1996; 13: 69–85

    Article  PubMed  CAS  Google Scholar 

  81. Niemi M, Neuvonen PJ, Kivisto KT. Effect of gemfibrozil on the pharmacokinetics and pharmacodynamics of glimepiride. Clin Pharmacol Ther 2001; 70: 439–45

    Article  PubMed  CAS  Google Scholar 

  82. Niemi M, Backman JT, Neuvonen M, et al. Effects of flucona-zole and fluvoxamine on the pharmacokinetics and pharmacodynamics of glimepiride. Clin Pharmacol Ther 2001; 69: 194–200

    Article  PubMed  CAS  Google Scholar 

  83. Niemi M, Kivisto KT, Backman JT, et al. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of glimepiride. Br J Clin Pharmacol 2000; 50: 591–5

    Article  PubMed  CAS  Google Scholar 

  84. Malerczyk V, Badian M, Korn A, et al. Dose linearity assessment of glimepiride (Amaryl) tablets in healthy volunteers. Drug Metabol Drug Interact 1994; 11: 341–57

    Article  PubMed  CAS  Google Scholar 

  85. Rosenkranz B, Profozic V, Metelko Z, et al. Pharmacokinetics and safety of glimepiride at clinically effective doses in diabetic patients with renal impairment. Diabetologia 1996; 39: 1617–24

    Article  PubMed  CAS  Google Scholar 

  86. Rosenkranz B. Pharmacokinetic basis for the safety of glimepiride in risk groups of NIDDM patients. Horm Metab Res 1996; 28: 434–9

    Article  PubMed  CAS  Google Scholar 

  87. Carlson RF, Isley WL, Ogrinc FG, et al. Efficacy and safety of reformulated, micronized glibenclamide tablets in patients with non-insulin-dependent diabetes mellitus: a multicenter, double-blind, randomized trial. Clin Ther 1993; 15: 788–96

    PubMed  CAS  Google Scholar 

  88. Chung M, Kourides I, Canovatchel W, et al. Pharmacokinetics and pharmacodynamics of extended-release glipizide GITS compared with immediate-release glipizide in patients with type II diabetes mellitus. J Clin Pharmacol 2002; 42: 651–7

    Article  PubMed  CAS  Google Scholar 

  89. Simonson DC, Kourides IA, Feinglos M, et al. Efficacy, safety, and dose-response characteristics of glipizide gastrointestinal therapeutic system on glycemic control and insulin secretion in NIDDM: results of two multicenter, randomized, placebocontrolled clinical trials. The Glipizide Gastrointestinal Therapeutic System Study Group. Diabetes Care 1997; 20: 597–606

    CAS  Google Scholar 

  90. Berelowitz M, Fischette C, Cefalu W, et al. Comparative efficacy of a once-daily controlled-release formulation of glipizide and immediate-release glipizide in patients with NIDDM. Diabetes Care 1994; 17: 1460–4

    Article  PubMed  CAS  Google Scholar 

  91. McGavin JK, Perry CM, Goa KL. Gliclazide modified release. Drugs 2002; 62: 1357–64

    Article  PubMed  CAS  Google Scholar 

  92. Frey N, Laveille C, Paraire M, et al. Population PKPD modelling of the long-term hypoglycaemic effect of gliclazide given as a once-a-day modified release (MR) formulation. Br J Clin Pharmacol 2003; 55: 147–57

    Article  PubMed  CAS  Google Scholar 

  93. Kilo C, Meenan A, Bloomgarden Z. Glibenclamide versus glipizide in the treatment of patients with non-insulin-dependent diabetes mellitus. Clin Ther 1992; 14: 801–12

    PubMed  CAS  Google Scholar 

  94. Groop L, Groop P-H, Stenman S, et al. Comparison of pharmacokinetics, metabolic effects and mechanisms of action of glibenclamide and glipizide during long-term treatment. Diabetes Care 1987; 10: 671–7

    Article  PubMed  CAS  Google Scholar 

  95. Cozma LS, Luzio SD, Dunseath GJ, et al. Comparison of the effects of three insulinotropic drugs on plasma insulin levels after a standard meal. J Clin Pharmacol 2002; 42: 651–7

    Article  Google Scholar 

  96. Groop L, Luzi L, Melander A, et al. Different effects of glibenclamide and glipizide on insulin secretion and hepatic glucose production in normal and NIDDM subjects. Diabetes 1987; 36: 1320–8

    Article  PubMed  CAS  Google Scholar 

  97. Groop L, Wahlin-Boll E, Groop PH, et al. Pharmacokinetics and metabolic effects of glibenclamide and glipizide in type 2 diabetics. Eur J Clin Pharmacol 1985; 28: 697–704

    Article  PubMed  CAS  Google Scholar 

  98. van Staa T, Abenhaim L, Monette J. Rates of hypoglycaemia in users of sulfonylureas. J Clin Epidemiol 1997; 50: 735–41

    Article  PubMed  Google Scholar 

  99. Jennings AM, Wilson RM, Ward JD. Symptomatic hypoglycaemia in NDDM patients treated with oral hypoglycaemic agents. Diabetes Care 1989; 12: 203–31

    Article  PubMed  CAS  Google Scholar 

  100. Berger W, Caduff F, Pasquel M, et al. The relatively frequent incidence of severe sulfonylurea-induced hypoglycaemia in the last 25 years in Switzerland: results of 2 surveys in Switzerland in 1969 and 1984. Schweiz Med Wochenschr 1986; 116: 145–51

    PubMed  CAS  Google Scholar 

  101. Stenman S, Melander A, Groop PH, et al. What is the benefit of increasing the sulfonylurea dose? Ann Intern Med 1993; 118: 169–72

    PubMed  CAS  Google Scholar 

  102. Birkeland KI, Furuseth K, Melander A, et al. Long-term randomized placebo-controlled double-blind therapeutic comparison of glipizide and glibenclamide: glycemic control and insulin secretion during 15 months. Diabetes Care 1994; 17: 45–9

    Article  PubMed  CAS  Google Scholar 

  103. Simcic KJ, McDermott MT, White JC, et al. Crossover comparison of maximum dose glibenclamide and glipizide. South Med J 1991; 84: 743–6

    Article  PubMed  CAS  Google Scholar 

  104. Raptis SA, Hatziagelaki E, Dimitriadis G, et al. Comparative effects of glimepiride and glibenclamide on blood glucose, C-peptide and insulin concentrations in the fasting and postprandial state in normal man. Exp Clin Endocrinol Diabetes 1999; 107: 350–5

    Article  PubMed  CAS  Google Scholar 

  105. Clark HE, Matthews DR. The effect of glimepiride on pancreatic beta-cell function under hyperglycaemic clamp and hyperin-sulinaemic, euglycaemic clamp conditions in non-insulin-dependent diabetes mellitus. Horm Metab Res 1996; 28: 445–50

    Article  PubMed  CAS  Google Scholar 

  106. Sato J, Ohsawa I, Oshida Y, et al. Comparison of effects of three sulfonylureas on in vivo insulin action. Arzneimittelforschung 2001; 51: 459–64

    PubMed  CAS  Google Scholar 

  107. Lindblad U, Melander A. Sulphonylurea dose-response relationships: relation to clinical practice. Diabetes Obes Metab 2000; 2: 25–31

    Article  PubMed  CAS  Google Scholar 

  108. Goldberg RB, Holvey SM, Schneider J. A dose-response study of glimepiride in patients with NIDDM who have previously received sulfonylurea agents: the Glimepiride Protocol #201 Study Group. Diabetes Care 1996; 19: 849–56

    Article  PubMed  CAS  Google Scholar 

  109. Rosenstock J, Samols E, Muchmore DB, et al. Glimepiride, a new once-daily sulfonylurea: a double-blind placebo-controlled study of NIDDM patients. Glimepiride Study Group. Diabetes Care 1996; 19: 1194–9

    Article  CAS  Google Scholar 

  110. Campbell RK. Glimepiride: role of a new sulfonylurea in the treatment of type 2 diabetes mellitus. Ann Pharmacother 1998; 32: 1044–52

    Article  PubMed  CAS  Google Scholar 

  111. Groop L, Schalin C, Franssila-Kallunki A, et al. Characteristics of non-insulin-dependent diabetic patients with secondary failure to oral antidiabetic therapy. Am J Med 1989; 87: 183–90

    Article  PubMed  CAS  Google Scholar 

  112. Groop LC, Pelkonen R, Koskimies S, et al. Secondary failure to treatment with oral antidiabetic agents in non-insulin-dependent diabetes. Diabetes Care 1986; 9: 129–33

    Article  PubMed  CAS  Google Scholar 

  113. Chow CC, Tsang LW, Sorensen JP, et al. Comparison of insulin with or without continuation of oral hypoglycemic agents in the treatment of secondary failure in NIDDM patients. Diabetes Care 1995; 18: 307–14

    Article  PubMed  CAS  Google Scholar 

  114. Fanghanel G, Sanchez-Reyes L, Trujillo C, et al. Metformin’s effects on glucose and lipid metabolism in patients with secondary failure to sulfonylureas. Diabetes Care 1996; 19: 1185–9

    Article  PubMed  CAS  Google Scholar 

  115. Pontiroli AE, Calderara A, Pozza G. Secondary failure of oral hypoglycaemic agents: frequency, possible causes, and management. Diabetes Metab Rev 1994; 10: 31–43

    Article  PubMed  CAS  Google Scholar 

  116. Yildiz BO, Gurlek A. Failure of sulfonylureas in type 2 diabetes. Horm Metab Res 1999; 31: 293–4

    Article  PubMed  CAS  Google Scholar 

  117. Taverna MJ, Pacher N, Bruzzo F, et al. Beta-cell function evaluated by HOMA as a predictor of secondary sulphonylurea failure in type 2 diabetes. Diabet Med 2001; 18: 584–8

    Article  PubMed  CAS  Google Scholar 

  118. Sami T, Kabadi UM, Moshiri S. The effect on metabolic control of second-generation sulfonylurea drugs in patients with NIDDM after secondary failure to first-generation agents. J Fam Pract 1996; 43: 370–4

    PubMed  CAS  Google Scholar 

  119. Ling Z, Kiekens R, Mahler T, et al. Effects of chronically elevated glucose levels on the functional properties of rat pancreatic beta-cells. Diabetes 1996; 45: 1774–82

    Article  PubMed  CAS  Google Scholar 

  120. Sivitz WI. Lipotoxicity and glucotoxicity in type 2 diabetes: effects on development and progression. Postgrad Med 2001; 109: 55–9, 63–4

    Article  PubMed  CAS  Google Scholar 

  121. Poitout V, Robertson RP. Minireview: secondary beta-cell failure in type 2 diabetes: a convergence of glucotoxicity and lipotoxicity. Endocrinology 2002; 143: 339–42

    Article  PubMed  CAS  Google Scholar 

  122. Kaiser N, Leibowitz G, Nesher R. Glucotoxicity and beta-cell failure in type 2 diabetes mellitus. J Pediatr Endocrinol Metab 2003; 16: 5–22

    Article  PubMed  CAS  Google Scholar 

  123. Malaisse WJ, Marynissen G, Sener A. Possible role of glycogen accumulation in B-cell glucotoxicity. Metabolism 1992; 41: 814–9

    Article  PubMed  CAS  Google Scholar 

  124. Liu YQ, Tornheim K, Leahy JL. Shared biochemical properties of glucotoxicity and lipotoxicity in islets decrease citrate synthase activity and increase phosphofructokinase activity. Diabetes 1998; 47: 1889–93

    Article  PubMed  CAS  Google Scholar 

  125. Maedler K, Sergeev P, Ris F, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002; 110: 851–60

    PubMed  CAS  Google Scholar 

  126. Karam JH. Reversible insulin resistance in non-insulin-dependent diabetes mellitus. Horm Metab Res 1996; 28: 440–4

    Article  PubMed  CAS  Google Scholar 

  127. Buren J, Lindmark S, Renstrom F, et al. In vitro reversal of hyperglycemia normalizes insulin action in fat cells from type 2 diabetes patients: is cellular insulin resistance caused by glucotoxicity in vivo? Metabolism 2003; 52: 239–45

    Article  PubMed  CAS  Google Scholar 

  128. Wright A, Burden AC, Paisey RB, et al. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the UK Prospective Diabetes Study (UKPDS 57). Diabetes Care 2002; 25: 330–6

    Article  PubMed  CAS  Google Scholar 

  129. Turner RC, Cull CA, Frighi V, et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49): UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999; 281: 2005–12

    Article  PubMed  CAS  Google Scholar 

  130. Matthews DR, Cull CA, Stratton IM, et al. UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med 1998; 15: 297–303

    CAS  Google Scholar 

  131. Landstedt-Hallin L, Arner P, Lins PE, et al. The role of sulphonylurea in combination therapy assessed in a trial of sulphonylurea withdrawal: Scandinavian Insulin-Sulphonylurea Study Group Research Team. Diabet Med 1999; 16: 827–34

    Article  PubMed  CAS  Google Scholar 

  132. Kobayashi T, Nakanishi K, Murase T, et al. Small doses of subcutaneous insulin as a strategy for preventing slowly progressive beta-cell failure in islet cell antibody-positive patients with clinical features of NIDDM. Diabetes 1996; 45: 622–6

    Article  PubMed  CAS  Google Scholar 

  133. Fukui M, Nakano K, Maruya E, et al. Diagnostic significance of antibodies to glutamic acid decarboxylase in Japanese diabetic patients with secondary oral hypoglycemic agents failure. Clin Immunol Immunopathol 1997; 85: 182–6

    Article  PubMed  CAS  Google Scholar 

  134. Rattarasarn C, Aguilar Diosdado M, Soonthornpun S. Glutamic acid decarboxylase antibodies in non-insulin-dependent diabetes patients with secondary sulfonylurea failure in Thailand. Diabetes Res Clin Pract 1997; 37: 193–7

    Article  PubMed  CAS  Google Scholar 

  135. Harrower AD. Comparison of efficacy, secondary failure rate, and complications of sulfonylureas. J Diabetes Complications 1994; 8: 201–3

    Article  PubMed  CAS  Google Scholar 

  136. BastyrIII EJ, Johnson ME, Trautmann ME, et al. Insulin lispro in the treatment of patients with type 2 diabetes mellitus after oral agent failure. Clin Ther 1999; 21: 1703–14

    Article  PubMed  CAS  Google Scholar 

  137. Ross SA, Zinman B, Campos RV, et al. A comparative study of insulin lispro and human regular insulin in patients with type 2 diabetes mellitus and secondary failure of oral hypoglycemic agents. Clin Invest Med 2001; 24: 292–8

    PubMed  CAS  Google Scholar 

  138. Feinglos MN, Thacker CH, English J, et al. Modification of postprandial hyperglycemia with insulin lispro improves glucose control in patients with type 2 diabetes. Diabetes Care 1997; 20: 1539–42

    Article  PubMed  CAS  Google Scholar 

  139. Riddle MC. Combined therapy with a sulfonylurea plus evening insulin: safe, reliable, and becoming routine. Horm Metab Res 1996; 28: 430–3

    Article  PubMed  CAS  Google Scholar 

  140. Shank ML, Del Prato S, DeFronzo RA. Bedtime insulin/daytime glipizide: effective therapy for sulfonylurea failures in NIDDM. Diabetes 1995; 44: 165–72

    Article  PubMed  CAS  Google Scholar 

  141. Ravnik-Oblak M, Mrevlje F. Insulin versus a combination of insulin and sulfonylurea in the treatment of NIDDM patients with secondary oral failure. Diabetes Res Clin Pract 1995; 30: 27–35

    Article  PubMed  CAS  Google Scholar 

  142. Johnson JL, Wolf SL, Kabadi UM. Efficacy of insulin and sulfonylurea combination therapy in type II diabetes: a meta-analysis of the randomized placebo-controlled trials. Arch Intern Med 1996; 156: 259–64

    Article  PubMed  CAS  Google Scholar 

  143. Landstedt-Hallin L, Adamson U, Arner P, et al. Comparison of bedtime NPH or preprandial regular insulin combined with glibenclamide in secondary sulfonylurea failure. Diabetes Care 1995; 18: 1183–6

    Article  PubMed  CAS  Google Scholar 

  144. Clauson P, Karlander S, Steen L, et al. Daytime glibenclamide and bedtime NPH insulin compared to intensive insulin treatment in secondary sulphonylurea failure: a 1-year follow-up. Diabet Med 1996; 13: 471–7

    Article  PubMed  CAS  Google Scholar 

  145. Olsson PO, Lindstrom T. Combination-therapy with bedtime NPH insulin and sulphonylureas gives similar glycaemic control but lower weight gain than insulin twice daily in patients with type 2 diabetes. Diabetes Metab 2002; 28: 272–7

    PubMed  CAS  Google Scholar 

  146. Castillo M, Scheen AJ, Paolisso G, et al. The addition of glipizide to insulin therapy in type-II diabetic patients with secondary failure to sulfonylureas is useful only in the presence of a significant residual insulin secretion. Acta Endocrinol (Copenh) 1987; 116: 364–72

    CAS  Google Scholar 

  147. Feinglos MN, Thacker CR, Lobaugh B, et al. Combination insulin and sulfonylurea therapy in insulin-requiring type 2 diabetes mellitus. Diabetes Res Clin Pract 1998; 39: 193–9

    Article  PubMed  CAS  Google Scholar 

  148. Abraira C, Henderson WG, Colwell JA, et al. Response to intensive therapy steps and to glipizide dose in combination with insulin in type 2 diabetes: VA feasibility study on glycemic control and complications (VA CSDM). Diabetes Care 1998; 21: 574–9

    Article  PubMed  CAS  Google Scholar 

  149. Binder C, Bendtson I. Endocrine emergencies: hypoglycaemia. Baillieres Clin Endocrinol Metab 1992; 6: 23–39

    Article  PubMed  CAS  Google Scholar 

  150. Marks V, Teale JD. Drug-induced hypoglycemia. Endocrinol Metab Clin North Am 1999; 28: 555–77

    Article  PubMed  CAS  Google Scholar 

  151. Burge MR, Schmitz-Fiorentino K, Fischette C, et al. Aprospective trial of risk factors for sulfonylurea-induced hypoglycemia in type 2 diabetes mellitus. JAMA 1998; 279: 137–43

    Article  PubMed  CAS  Google Scholar 

  152. Chan TY. Anti-diabetic drugs as a cause of hypoglycaemia among acute medical admissions in Hong Kong and Singapore: relationship to the prescribing patterns in diabetic patients. Singapore Med J 1998; 39: 186–8

    PubMed  CAS  Google Scholar 

  153. Ben-Ami H, Nagachandran P, Mendelson A, et al. Drug-induced hypoglycemic coma in 102 diabetic patients. Arch Intern Med 1999; 159: 281–4

    Article  PubMed  CAS  Google Scholar 

  154. Holstein A, Plaschke A, Hammer C, et al. Characteristics and time course of severe glimepiride-versus glibenclamide-in-duced hypoglycaemia. Eur J Clin Pharmacol 2003; 59: 91–7

    Article  PubMed  CAS  Google Scholar 

  155. Salas M, Caro JJ. Are hypoglycaemia and other adverse effects similar among sulphonylureas? Adverse Drug React Toxicol Rev 2002; 21: 205–17

    PubMed  CAS  Google Scholar 

  156. Miller CD, Phillips LS, Ziemer DC, et al. Hypoglycemia in patients with type 2 diabetes mellitus. Arch Intern Med 2001; 161: 1653–9

    Article  PubMed  CAS  Google Scholar 

  157. Holstein A, Plaschke A, Egberts EH. Clinical characterisation of severe hypoglycaemia: a prospective population-based study. Exp Clin Endocrinol Diabetes 2003; 111: 364–9

    Article  PubMed  CAS  Google Scholar 

  158. Marker JC, Cryer PE, Clutter WE. Attenuated glucose recovery from hypoglycemia in the elderly. Diabetes 1992; 41: 671–8

    Article  PubMed  CAS  Google Scholar 

  159. Matyka K, Evans M, Lomas J, et al. Altered hierarchy of protective responses against severe hypoglycemia in normal aging in healthy men. Diabetes Care 1997; 20: 135–41

    Article  PubMed  CAS  Google Scholar 

  160. Shorr RI, Ray WA, Daugherty JR, et al. Incidence and risk factors for serious hypoglycemia in older persons using insulin or sulfonylureas. Arch Intern Med 1997; 157: 1681–6

    Article  PubMed  CAS  Google Scholar 

  161. Krepinsky J, Ingram AJ, Clase CM. Prolonged sulfonylurea-induced hypoglycemia in diabetic patients with end-stage renal disease. Am J Kidney Dis 2000; 35: 500–5

    Article  PubMed  CAS  Google Scholar 

  162. Harrower AD. Pharmacokinetics of oral antihyperglycaemic agents in patients with renal insufficiency. Clin Pharmacokinet 1996; 31: 111–9

    Article  PubMed  CAS  Google Scholar 

  163. Graal MB, Wolffenbuttel BH. The use of sulphonylureas in the elderly. Drugs Aging 1999; 15: 471–81

    Article  PubMed  CAS  Google Scholar 

  164. Desouza C, Salazar H, Cheong B, et al. Association of hypoglycemia and cardiac ischemia: a study based on continuous monitoring. Diabetes Care 2003; 26: 1485–9

    Article  PubMed  Google Scholar 

  165. Thamer M, Ray NE, Taylor T. Association between antihyper-tensive drug use and hypoglycemia: a case-control study of diabetic users of insulin or sulfonylureas. Clin Ther 1999; 21: 1387–400

    Article  PubMed  CAS  Google Scholar 

  166. Oltmanns KM, Deininger E, Wellhoener P, et al. Influence of captopril on symptomatic and hormonal responses to hypoglycaemia in humans. Br J Clin Pharmacol 2003; 55: 347–53

    Article  PubMed  CAS  Google Scholar 

  167. Moore N, Kreft-Jais C, Haramburu F, et al. Reports of hypoglycaemia associated with the use of ACE inhibitors and other drugs: a case/non-case study in the French pharmacovigilance system database. Br J Clin Pharmacol 1997; 44: 513–8

    Article  PubMed  CAS  Google Scholar 

  168. Spiller HA. Management of antidiabetic medications in overdose. Drug Saf 1998; 19: 411–24

    Article  PubMed  CAS  Google Scholar 

  169. McLaughlin SA, Crandall CS, McKinney PE. Octreotide: an antidote for sulfonylurea-induced hypoglycemia. Ann Emerg Med 2000; 36: 133–8

    Article  PubMed  CAS  Google Scholar 

  170. Harrigan RA, Nathan MS, Beattie P. Oral agents for the treatment of type 2 diabetes mellitus: pharmacology, toxicity, and treatment. Ann Emerg Med 2001; 38: 68–78

    Article  PubMed  CAS  Google Scholar 

  171. Kaufman DW, Kelly JP, Johannes CB, et al. Acute thrombo-cytopenic purpura in relation to the use of drugs. Blood 1993; 82: 2714–8

    PubMed  CAS  Google Scholar 

  172. Scheen AJ, Lefebvre PJ. Pharmacological treatment of the obese diabetic patient. Diabete Metab 1993; 19: 547-59.

    PubMed  CAS  Google Scholar 

  173. Merlob P, Levitt O, Stahl B. Oral antihyperglycemic agents during pregnancy and lactation: a review. Paediatr Drugs 2002; 4: 755–60

    PubMed  Google Scholar 

  174. Langer O, Conway DL, Berkus MD, et al. A comparison of glibenclamide and insulin in women with gestational diabetes mellitus. N Engl J Med 2000; 343: 1134–8

    Article  PubMed  CAS  Google Scholar 

  175. Goetzl L, Wilkins I. Glibenclamide compared to insulin for the treatment of gestational diabetes mellitus: a cost analysis. J Perinatal 2002; 22: 403–6

    Article  Google Scholar 

  176. UKPDS Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33): UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 837–53

    Article  Google Scholar 

  177. Hiraoka M. Pathophysiological functions of ATP-sensitive K+ channels in myocardial ischemia. Jpn Heart J 1997; 38: 297–315

    Article  PubMed  CAS  Google Scholar 

  178. Pomerantz BJ, Robinson TN, Heimbach JK, et al. Selective mitochondrial KATP channel opening controls human myocardial preconditioning: too much of a good thing? Surgery 2000; 128: 368–73

    Article  PubMed  CAS  Google Scholar 

  179. Brady PA, Terzic A. The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol 1998; 31: 950–6

    Article  PubMed  CAS  Google Scholar 

  180. Howes LG, Sundaresan P, Lykos D. Cardiovascular effects of oral hypoglycaemic drugs. Clin Exp Pharmacol Physiol 1996; 23: 201–6

    Article  PubMed  CAS  Google Scholar 

  181. Scognamiglio R, Avogaro A, Vigili de Kreutzenberg S, et al. Effects of treatment with sulfonylurea drugs or insulin on ischemia-induced myocardial dysfunction in type 2 diabetes. Diabetes 2002; 51: 808–12

    Article  PubMed  CAS  Google Scholar 

  182. Schotborgh CE, Wilde AA. Sulfonylurea derivatives in cardiovascular research and in cardiovascular patients. Cardiovasc Res 1997; 34: 73–80

    Article  PubMed  CAS  Google Scholar 

  183. Garratt KN, Brady PA, Hassinger NL, et al. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol 1999; 33: 119–24

    Article  PubMed  CAS  Google Scholar 

  184. Lee TM, Chou TF. Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab 2003; 88: 531–7

    Article  PubMed  CAS  Google Scholar 

  185. Ballagi-Pordany G, Koszeghy A, Koltai MZ, et al. Divergent cardiac effects of the first and second generation hypoglycemic sulfonylurea compounds. Diabetes Res Clin Pract 1990; 8: 109–14

    Article  PubMed  CAS  Google Scholar 

  186. Geisen K, Vegh A, Krause E, et al. Cardiovascular effects of conventional sulfonylureas and glimepiride. Horm Metab Res 1996; 28: 496–507

    Article  PubMed  CAS  Google Scholar 

  187. Schaffer SW, Warner BA, Wilson GL. Effects of chronic glipizide treatment on the NIDD heart. Horm Metab Res 1993; 25: 348–52

    Article  PubMed  CAS  Google Scholar 

  188. Ashcroft FM, Gribble FM. Tissue-specific effects of sulfonylureas: lessons from studies of cloned K(ATP) channels. J Diabetes Complications 2000; 14: 192–6

    Article  PubMed  CAS  Google Scholar 

  189. Gribble FM, Ashcroft FM. Sulfonylurea sensitivity of adenosine triphosphate-sensitive potassium channels from beta cells and extrapancreatic tissues. Metabolism 2000; 49 Suppl. 2: 3–6

    Article  PubMed  CAS  Google Scholar 

  190. Legtenberg RJ, Houston RJ, Oeseburg B, et al. Effects of sulfonylurea derivatives on ischemia-induced loss of function in the isolated rat heart. Eur J Pharmacol 2001; 419: 85–92

    Article  PubMed  CAS  Google Scholar 

  191. Nieszner E, Posa I, Kocsis E, et al. Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits. Exp Clin Endocrinol Diabetes 2002; 110: 212–8

    Article  PubMed  CAS  Google Scholar 

  192. del Valle HF, Lascano EC, Negroni JA, et al. Glibenclamide effects on reperfusion-induced malignant arrhythmias and left ventricular mechanical recovery from stunning in conscious sheep. Cardiovasc Res 2001; 50: 474–85

    Article  PubMed  Google Scholar 

  193. Lomuscio A, Vergani D, Marano L, et al. Effects of glibenclamide on ventricular fibrillation in non-insulin-dependent diabetics with acute myocardial infarction. Coron Artery Dis 1994; 5: 767–71

    PubMed  CAS  Google Scholar 

  194. Malaisse WJ. Stimulation of insulin release by non-sulfonylurea hypoglycemic agents: the meglitinide family. Horm Metab Res 1995; 27: 263–6

    Article  PubMed  CAS  Google Scholar 

  195. Dornhorst A. Insulinotropic meglitinide analogues. Lancet 2001; 358: 1709–16

    Article  PubMed  CAS  Google Scholar 

  196. Grell W, Humaus R, Griss G, et al. Repaglinide and related hypoglycemic benzoic acid derivatives. J Med Chem 1998; 41: 5219–46

    Article  PubMed  Google Scholar 

  197. Hatorp V, Oliver S, Su CA. Bioavailability of repaglinide, a novel antidiabetic agent, administered orally in tablet or solution form or intravenously in healthy male volunteers. Int J Clin Pharmacol Ther 1998; 36: 636–41

    PubMed  CAS  Google Scholar 

  198. Hatorp V, Huang WC, Strange P. Repaglinide pharmacokinetics in healthy young adult and elderly subjects. Clin Ther 1999; 21: 702–10

    Article  PubMed  CAS  Google Scholar 

  199. Balfour JA, Faulds D. Repaglinide. Drugs Aging 1998; 13: 173–80

    Article  PubMed  CAS  Google Scholar 

  200. Bakkali-Nadi A, Malaisse-Lagae F, Malaisse WJ. Ionophoretic activity of meglitinide analogues. Diabetes Res 1994; 27: 61–71

    PubMed  CAS  Google Scholar 

  201. Malaisse WJ. Insulinotropic action of meglitinide analogues: modulation by an activator of ATP-sensitive K+ channels and high extracellular K+ concentrations. Pharmacol Res 1995; 32: 111–4

    Article  PubMed  CAS  Google Scholar 

  202. Malaisse WJ. Mechanism of action of a new class of insulin secretagogues. Exp Clin Endocrinol Diabetes 1999; 107 Suppl. 4: S140–3

    Article  PubMed  CAS  Google Scholar 

  203. Gromada J, Dissing S, Kofod H, et al. Effects of the hypogly-caemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in beta TC3 cells and rat pancreatic beta cells. Diabetologia 1995; 38: 1025–32

    Article  PubMed  CAS  Google Scholar 

  204. Dabrowski M, Wahl P, Holmes WE, et al. Effect of repaglinide on cloned beta cell, cardiac and smooth muscle types of ATP-sensitive potassium channels. Diabetologia 2001; 44: 747–56

    Article  PubMed  CAS  Google Scholar 

  205. Ladriere L, Malaisse-Lagae F, Fuhlendorff J, et al. Repaglinide, glibenclamide and glimepiride administration to normal and hereditarily diabetic rats. Eur J Pharmacol 1997; 335: 227–34

    Article  PubMed  CAS  Google Scholar 

  206. Owens DR. Repaglinide: prandial glucose regulator: a new class of oral antidiabetic drugs. Diabet Med 1998; 15 Suppl. 4: S28–36

    Article  PubMed  Google Scholar 

  207. Pratley RE, Foley JE, Dunning BE. Rapid acting insulinotropic agents: restoration of early insulin secretion as a physiologic approach to improve glucose control. Curr Pharm Des 2001; 7: 1375–97

    Article  PubMed  CAS  Google Scholar 

  208. Fuhlendorff J, Rorsman P, Kofod H, et al. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 1998; 47: 345–51

    Article  PubMed  CAS  Google Scholar 

  209. Wolffenbuttel BH, Landgraf R. A 1-year multicenter randomized double-blind comparison of repaglinide and glibenclamide for the treatment of type 2 diabetes: Dutch and German Repaglinide Study Group. Diabetes Care 1999; 22: 463–7

    Article  PubMed  CAS  Google Scholar 

  210. Gomis R. Repaglinide as monotherapy in Type 2 diabetes. Exp Clin Endocrinol Diabetes 1999; 107 Suppl. 4: S133–5

    Article  PubMed  CAS  Google Scholar 

  211. Owens DR, Luzio SD, Ismail I, et al. Increased prandial insulin secretion after administration of a single preprandial oral dose of repaglinide in patients with type 2 diabetes. Diabetes Care 2000; 23: 518–23

    Article  PubMed  CAS  Google Scholar 

  212. Strange P, Schwartz SL, Graf RJ, et al. Pharmacokinetics, pharmacodynamics, and dose-response relationship of repaglinide in type 2 diabetes. Diabetes Technol Ther 1999; 1: 247–56

    Article  PubMed  CAS  Google Scholar 

  213. Schatz H. Preclinical and clinical studies on safety and tolerability of repaglinide. Exp Clin Endocrinol Diabetes 1999; 107 Suppl. 4: S144–8

    Article  PubMed  CAS  Google Scholar 

  214. Damsbo P, Clauson P, Marbury TC, et al. A double-blind randomized comparison of meal-related glycemic control by repaglinide and glibenclamide in well-controlled type 2 diabetic patients. Diabetes Care 1999; 22: 789–94

    Article  PubMed  CAS  Google Scholar 

  215. Jovanovic L, Dailey III G, Huang WC, et al. Repaglinide in type 2 diabetes: a 24-week, fixed-dose efficacy and safety study. J Clin Pharmacol 2000; 40: 49–57

    Article  PubMed  CAS  Google Scholar 

  216. Damsbo P, Marbury TC, Hatorp V, et al. Flexible prandial glucose regulation with repaglinide in patients with type 2 diabetes. Diabetes Res Clin Pract 1999; 45: 31–9

    Article  PubMed  CAS  Google Scholar 

  217. Mafauzy M. Repaglinide versus glibenclamide treatment of type 2 diabetes during Ramadan fasting. Diabetes Res Clin Pract 2002; 58: 45–53

    Article  PubMed  CAS  Google Scholar 

  218. Wolffenbuttel BH, Nijst L, Sels JP, et al. Effects of a new oral hypoglycaemic agent, repaglinide, on metabolic control in sulfonylurea-treated patients with NIDDM. Eur J Pharmacol 1993; 45: 113–6

    Article  CAS  Google Scholar 

  219. Goldberg RB, Einhorn D, Lucas CP, et al. A randomized placebo-controlled trial of repaglinide in the treatment of type 2 diabetes. Diabetes Care 1998; 21: 1897–903

    Article  PubMed  CAS  Google Scholar 

  220. Madsbad S, Kilhovd B, Lager I, et al. Comparison between repaglinide and glipizide in type 2 diabetes mellitus: a 1-year multicentre study. Diabet Med 2001; 18: 395–401

    Article  PubMed  CAS  Google Scholar 

  221. Culy CR, Jarvis B. Repaglinide: a review of its therapeutic use in type 2 diabetes mellitus. Drugs 2001; 61: 1625–6

    Article  PubMed  CAS  Google Scholar 

  222. Raskin P, Jovanovic L, Berger S, et al. Repaglinide/troglitazone combination therapy: improved glycemic control in type 2 diabetes. Diabetes Care 2000; 23: 979–83

    Article  PubMed  CAS  Google Scholar 

  223. Moses R. Repaglinide in combination therapy with metformin in type 2 diabetes. Exp Clin Endocrinol Diabetes 1999; 107 Suppl. 4: S136–9

    Article  PubMed  CAS  Google Scholar 

  224. de Luis DA, Aller R, Cuellar L, et al. Effect of repaglinide addition to NPH insulin monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 2001; 24: 1844–55

    Article  PubMed  Google Scholar 

  225. Furlong NJ, Hulme SA, O’Brien SV, et al. Repaglinide versus metformin in combination with bedtime NPH insulin in patients with type 2 diabetes established on insulin/metformin combination therapy. Diabetes Care 2002; 25: 1685–90

    Article  PubMed  CAS  Google Scholar 

  226. Marbury TC, Ruckle JL, Hatorp V, et al. Pharmacokinetics of repaglinide in subjects with renal impairment. Clin Pharmacol Ther 2000; 67: 7–15

    Article  PubMed  CAS  Google Scholar 

  227. Schumacher S, Abbasi I, Weise D, et al. Single- and multiple-dose pharmacokinetics of repaglinide in patients with type 2 diabetes and renal impairment. Eur J Clin Pharmacol 2001; 57: 147–52

    Article  PubMed  CAS  Google Scholar 

  228. Hatorp V, Walther KH, Christensen MS, et al. Single-dose pharmacokinetics of repaglinide in subjects with chronic liver disease. J Clin Pharmacol 2000; 40: 142–52

    Article  PubMed  CAS  Google Scholar 

  229. Chachin M, Yamada M, Fujita A, et al. Nateglinide, a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety, specifically inhibits pancreatic beta-cell-type K(ATP) channels. J Pharmacol Exp Ther 2003; 304: 1025–32

    Article  PubMed  CAS  Google Scholar 

  230. Hu S, Wang S, Fanelli B, et al. Pancreatic beta-cell K(ATP) channel activity and membrane-binding studies with nateglinide: a comparison with sulfonylureas and repaglinide. J Pharmacol Exp Ther 2000; 293: 444–52

    PubMed  CAS  Google Scholar 

  231. Hansen AM, Christensen IT, Hansen JB, et al. Differential interactions of nateglinide and repaglinide on the human beta-cell sulphonylurea receptor 1. Diabetes 2002; 51: 2789–95

    Article  PubMed  CAS  Google Scholar 

  232. Hu S, Boettcher BR, Dunning BE. The mechanisms underlying the unique pharmacodynamics of nateglinide. Diabetologia 2003; 46 Suppl. 1: M37–43

    PubMed  CAS  Google Scholar 

  233. Hu S. Interaction of nateglinide with K(ATP) channel in beta-cells underlies its unique insulinotropic action. Eur J Pharmacol 2002; 442: 163–71

    Article  PubMed  CAS  Google Scholar 

  234. Kahn SE, Montgomery B, Howell W, et al. Importance of early phase insulin secretion to intravenous glucose tolerance in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 2001; 86: 5824–9

    Article  PubMed  CAS  Google Scholar 

  235. Hu S, Wang S, Dunning BE. Glucose-dependent and glucose-sensitizing insulinotropic effect of nateglinide: comparison to sulfonylureas and repaglinide. Int J Exp Diabetes Res 2001; 2: 63–72

    Article  PubMed  CAS  Google Scholar 

  236. Saloranta C, Guitard C, Pecher E, et al. Nateglinide improves early insulin secretion and controls postprandial glucose excursions in a prediabetic population. Diabetes Care 2002; 25: 2141–6

    Article  PubMed  CAS  Google Scholar 

  237. Hollander PA, Schwartz SL, Gatlin MR, et al. Importance of early insulin secretion: comparison of nateglinide and gliben-clamide in previously diet-treated patients with type 2 diabetes. Diabetes Care 2001; 24: 983–8

    Article  PubMed  CAS  Google Scholar 

  238. Salas M, Ward A, Caro J. Health and economic effects of adding nateglinide to metformin to achieve dual control of glycosylated hemoglobin and postprandial glucose levels in a model of type 2 diabetes mellitus. Clin Ther 2002; 24: 1690–705

    Article  PubMed  Google Scholar 

  239. Marre M, Van Gaal L, Usadel KH, et al. Nateglinide improves glycaemic control when added to metformin monotherapy: results of a randomized trial with type 2 diabetes patients. Diabetes Obes Metab 2002; 4: 177–86

    Article  PubMed  CAS  Google Scholar 

  240. Rosenstock J, Shen SG, Gatlin MR, et al. Combination therapy with nateglinide and a thiazolidinedione improves glycemic control in type 2 diabetes. Diabetes Care 2002; 25: 1529–33

    Article  PubMed  CAS  Google Scholar 

  241. Groop L. Pathogenesis of type 2 diabetes: the relative contribution of insulin resistance and impaired insulin secretion. Int J Clin Pract Suppl 2000; 113: 3–13

    PubMed  Google Scholar 

  242. Arner P, Pollare T, Lithell H. Different aetiologies of type 2 (noninsulin-dependent) diabetes mellitus in obese and no-nobese subjects. Diabetologia 1991; 34: 483–7

    Article  PubMed  CAS  Google Scholar 

  243. Gerich J. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr Rev 1998; 19: 491–503

    Article  PubMed  CAS  Google Scholar 

  244. Vaag A, Henriksen J, Madsbad S, et al. Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 95: 690–8

    Article  PubMed  CAS  Google Scholar 

  245. Garber AJ, Duncan TG, Goodman AM, et al. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled trial. Am J Med 1997; 103(6): 491–7

    Article  PubMed  CAS  Google Scholar 

  246. UKPDS Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34): UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 854–65

    Article  Google Scholar 

  247. Radziuk J, Zhang Z, Wiernsperger N, et al. Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes 1997; 46: 1406–13

    Article  PubMed  CAS  Google Scholar 

  248. Minassian C, Tarpin S, Mithieux G. Role of glucose-6 phosphatase, glucokinase, and glucose-6 phosphate in liver insulin resistance and its correction by metformin. Biochem Pharmacol 1998; 55: 1213–9

    Article  PubMed  CAS  Google Scholar 

  249. Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000; 49: 2063–9

    Article  PubMed  CAS  Google Scholar 

  250. Chu CA, Wiernsperger N, Muscato N, et al. The acute effect of metformin on glucose production in the conscious dog is primarily attributable to inhibition of glycogenolysis. Metabolism 2000; 49: 1619–26

    Article  PubMed  CAS  Google Scholar 

  251. Song S, Andrikopoulos S, Filippis C, et al. Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin. Am J Physiol Endocrinol Metab 2001; 281: E275–82

    PubMed  CAS  Google Scholar 

  252. Gugliano D, Quatraro A, Consoli G, et al. Metformin for obese, insulin treated diabetic patients: improvement in glycaemic control and reduction of metabolic risk factors. Eur J Clin Pharmacol 1993; 44: 107–12

    Article  Google Scholar 

  253. Jenkins DJ, Taylor RH, Goff DV, et al. Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes 1981; 30: 951–4

    Article  PubMed  CAS  Google Scholar 

  254. Gray RS, Olefsky JM. Effect of a glucosidase inhibitor on the metabolic response of diabetic rats to a high carbohydrate diet, consisting of starch and sucrose, or glucose. Metabolism 1982; 31: 88–92

    Article  PubMed  CAS  Google Scholar 

  255. Taylor RH, Barker HM, Bowey EA, et al. Regulation of the absorption of dietary carbohydrate in man by two new glycosidase inhibitors. Gut 1986; 27: 1471–8

    Article  PubMed  CAS  Google Scholar 

  256. Scott LJ, Spencer CM. Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus. Drugs 2000; 59: 521–49

    Article  PubMed  CAS  Google Scholar 

  257. Johnston PS, Lebovitz HE, Coniff RF, et al. Advantages of alpha-glucosidase inhibition as monotherapy in elderly type 2 diabetic patients. J Clin Endocrinol Metab 1998; 83: 1515–22

    Article  PubMed  CAS  Google Scholar 

  258. Yamauchi T, Kamon J, Waki H, et al. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma (PPARgamma) deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 2001; 276: 41245–54

    Article  PubMed  CAS  Google Scholar 

  259. Stumvoll M, Haring HU. Glitazones: clinical effects and molecular mechanisms. Ann Med 2002; 34: 217–24

    PubMed  CAS  Google Scholar 

  260. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev 2002; 18 Suppl. 2: S10–5

    Article  PubMed  CAS  Google Scholar 

  261. Yu JG, Javorschi S, Hevener AL, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 2002; 51: 2968–74

    Article  PubMed  CAS  Google Scholar 

  262. Tordjman J, Chauvet G, Quette J, et al. Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J Biol Chem 2003; 278: 18785–90

    Article  PubMed  CAS  Google Scholar 

  263. Itoh H, Doi K, Tanaka T, et al. Hypertension and insulin resistance: role of peroxisome proliferator-activated receptor γ. Clin Exp Pharmacol Physiol 1999; 26(7): 558–60

    Article  PubMed  CAS  Google Scholar 

  264. Yoshimoto T, Naruse M, Shizume H, et al. Vasculo-protective effects of insulin sensitizing agent pioglitazone in neointimal thickening and hypertensive vascular hypertrophy. Atherosclerosis 1999; 145: 333–40

    Article  PubMed  CAS  Google Scholar 

  265. Martens FM, Visseren FL, Lemay J, et al. Metabolic and additional vascular effects of thiazolidinediones. Drugs 2002; 62: 1463–80

    Article  PubMed  CAS  Google Scholar 

  266. Benbow A, Stewart M, Yeoman G. Thiazolidinediones for type 2 diabetes: all glitazones may exacerbate heart failure [letter]. BMJ 236

  267. Niemeyer NV, Janney LM. Thiazolidinedione-induced edema. Pharmacotherapy 2002 Jul; 22(7): 924–9

    Article  PubMed  Google Scholar 

  268. Idris I, Gray S, Donnelly R. Rosiglitazone and pulmonary oedema: an acute dose-dependent effect on human endothelial cell permeability. Diabetologia 2003 Feb; 46(2): 288–90

    PubMed  CAS  Google Scholar 

  269. Diamant M, Heine RJ. Thiazolidinediones in type 2 diabetes mellitus: current clinical evidence. Drugs 2003; 63(13): 1373–405

    Article  PubMed  CAS  Google Scholar 

  270. Hermann LS, Schersten B, Bitzen PO, et al. therapeutic comparison of metformin and sulfonylurea, alone and in various combinations: a double blind controlled study. Diabetes Care 1994; 17: 1100–9

    Article  PubMed  CAS  Google Scholar 

  271. Riddle M. Combining sulfonylureas and other oral agents. Am J Med 2000; 108 Suppl 6a: 5S–22S

    Google Scholar 

  272. Coniff RF, Shapiro JA, Seaton TB, et al. Multicenter, placebo-controlled trial comparing acarbose (BAYg 5421) with placebo, tolbutamide, and tolbutamide-plus-acarbose in non-insulin-dependent diabetes mellitus. Am J Med 1995; 98: 443–51

    Article  PubMed  CAS  Google Scholar 

  273. Segal P, Feig PU, Schernthaner G, et al. The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes Care 1997; 20: 687–91

    Article  PubMed  CAS  Google Scholar 

  274. Calle-Pascual AL, Garcia-Honduvilla J, Martin-Alvarez PJ, et al. Comparison between acarbose, metformin, and insulin treatment in type 2 diabetic patients with secondary failure to sulfonylurea treatment. Diabete Metab 1995; 21: 256–60

    PubMed  CAS  Google Scholar 

  275. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin dependent diabetes mellitus: the Multicenter Metformin Study Group. N Engl J Med 1995; 333: 541–9

    Article  PubMed  CAS  Google Scholar 

  276. Erle G, Lovise S, Stocchiero C, et al. A comparison of precon-stituted, fixed combinations of low-dose glibenclamide plus metformin versus high-dose glibenclamide alone in the treatment of type 2 diabetic patients. Acta Diabetol 1999; 36: 61–5

    Article  PubMed  CAS  Google Scholar 

  277. Garber AJ, Larsen J, Schneider SH, et al. Simultaneous gliben-clamide/metformin therapy is superior to component monotherapy as an initial pharmacological treatment for type 2 diabetes. Diabetes Obes Metab 2002; 4: 201–8

    Article  PubMed  CAS  Google Scholar 

  278. Nathan DM. Some answers, more controversy, from UKPDS: United Kingdom Prospective Diabetes Study. Lancet 1998; 352: 832–3

    Article  PubMed  CAS  Google Scholar 

  279. Fisman EZ, Tenenbaum A, Benderly M, et al. Antihyper-glycemic treatment in diabetics with coronary disease: increased metformin-associated mortality over a 5-year follow-up. Cardiology 1999; 91: 195–202

    Article  PubMed  CAS  Google Scholar 

  280. Yale JF, Valiquett TR, Ghazzi MN, et al. The effect of a thiazolidinedione drug, troglitazone, on glycemia in patients with type 2 diabetes mellitus poorly controlled with sulfony-lurea and metformin: a multicenter, randomized, double-blind, placebo-controlled trial. Ann Intern Med 2001; 134: 737–45

    PubMed  CAS  Google Scholar 

  281. Horton ES, Whitehouse F, Ghazzi MN, et al. Troglitazone in combination with sulfonylurea restores glycemic control in patients with type 2 diabetes: the Troglitazone Study Group. Diabetes Care 1998; 21: 1462–9

    Article  PubMed  CAS  Google Scholar 

  282. Rosenstock J, Kreider M, Menci L, et al. Efficacy and safety of rosiglitazone combined with glibenclamide is effective and well tolerated in type 2 diabetic patients inadequately controlled on maximum-dose glibenclamide [abstract]. Diabetes Res Clin Pract 2000; 50 Suppl. 1: S61

    Google Scholar 

  283. Kipnes MS, Krosnick A, Rendell MS, et al. Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized placebo-controlled study. Am J Med 2001; 111: 10–7

    Article  PubMed  CAS  Google Scholar 

  284. Wolffenbuttel BHR, Gomis R, Squatrito S, et al. Addition of low-dose rosiglitazone to sulfonylurea therapy improves glycemic control in type 2 diabetic patients. Diabet Med 2000; 17: 40–7

    Article  PubMed  CAS  Google Scholar 

  285. Inzucchi SE, Maggs DG, Spollett GR, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998; 338: 867–72

    Article  PubMed  CAS  Google Scholar 

  286. Virtanen KA, Hallsten K, Parkkola R, et al. Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 diabetic subjects. Diabetes 2003; 52: 283–90

    Article  PubMed  CAS  Google Scholar 

  287. Hallsten K, Virtanen KA, Lonnqvist F, et al. Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes. Diabetes 2002 Dec; 51(12): 3479–85

    Article  PubMed  CAS  Google Scholar 

  288. Fonseca V, Rosenstock J, Patwardhan R, et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000; 283: 1695–702

    Article  PubMed  CAS  Google Scholar 

  289. Einhorn D, Rendell M, Rosenzweig J, et al. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther 2000; 22: 1395–409

    CAS  Google Scholar 

  290. Rendell M, Glazer NB, Ye Z. Combination therapy with pioglitazone plus metformin or sulfonylurea in patients with type 2 diabetes: influence of prior antidiabetic drug regimen. J Diabet Complications 2003; 17: 211–7

    Article  Google Scholar 

  291. Gavin LA, Barth J, Arnold D, Shaw R. Troglitazone add-on therapy to a combination of sulfonylureas plus metformin achieved and sustained effective diabetes control. Endocr Pract 2000 Jul–Aug; 6(4): 305–310

    PubMed  CAS  Google Scholar 

  292. Bell DS, Ovalle F. Long-term efficacy of triple oral therapy for type 2 diabetes mellitus. Endocr Pract 2002; 8: 271–5

    PubMed  Google Scholar 

  293. Yki-Jarvinen H. Combination therapy with insulin and oral agents: optimizing glycemic control in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev 2002; 18 Suppl. 3: S77–81

    Article  PubMed  CAS  Google Scholar 

  294. HOE 901/2004 Study Investigators Group. Safety and efficacy of insulin glargine (HOE 901) versus NPH insulin in combination with oral treatment in Type 2 diabetic patients. Diabet Med 2003; 20: 545–51

    Article  Google Scholar 

  295. Fritsche A, Schweitzer MA, Haring HU, et al. Glimepiride combined with morning insulin glargine, bedtime neutral protamine hagedorn insulin, or bedtime insulin glargine in patients with type 2 diabetes: a randomized, controlled trial. Ann Intern Med 2003; 138: 952–9

    PubMed  CAS  Google Scholar 

  296. Strowig SM, Aviles-Santa ML, Raskin P. Comparison of insulin monotherapy and combination therapy with insulin and metformin or insulin and troglitazone in type 2 diabetes. Diabetes Care 2002; 25: 1691–8

    Article  PubMed  CAS  Google Scholar 

  297. Wulffele MG, Kooy A, Lehert P, et al. Combination of insulin and metformin in the treatment of type 2 diabetes. Diabetes Care 2002; 25: 2133–40

    Article  PubMed  CAS  Google Scholar 

  298. Schwartz S, Sievers R, Strange P, et al. Insulin 70/30 mix plus metformin versus triple oral therapy in the treatment of type 2 diabetes after failure of two oral drugs: efficacy, safety, and cost analysis. Diabetes Care 2003; 26: 2238–43

    Article  PubMed  CAS  Google Scholar 

  299. Riddle MC, Schneider J. Beginning insulin treatment of obese patients with evening 70/30 insulin plus glimepiride versus insulin alone: Glimepiride Combination Group. Diabetes Care 1998; 21: 1052–7

    Article  PubMed  CAS  Google Scholar 

  300. Riddle MC. New tactics for type II diabetes: regimens based on intermediate-acting insulin taken at bedtime. Lancet 1985; I: 192–251

    Article  Google Scholar 

  301. Riddle MC, Hart JS, Bouma DJ, et al. Efficacy of bedtime NPH insulin with daytime sulfonylurea for a subpopulation of Type II diabetes mellitus. Diabetes Care 1989; 12: 623–9

    Article  PubMed  CAS  Google Scholar 

  302. Riddle MC. Evening insulin strategy. Diabetes Care 1990; 13: 676–86

    Article  PubMed  CAS  Google Scholar 

  303. Groop LC, Widen E, Ekstrand A, et al. Morning or bedtime NPH insulin combined with sulfonylurea in treatment of NIDDM. Diabetes Care 1992; 15: 831–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Rendell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendell, M. The Role of Sulphonylureas in the Management of Type 2 Diabetes Mellitus. Drugs 64, 1339–1358 (2004). https://doi.org/10.2165/00003495-200464120-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200464120-00006

Keywords

Navigation