Skip to main content
Log in

Durability and Rapidity of Response to Anakinra in Patients with Rheumatoid Arthritis

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic and progressive inflammatory disease that ultimately leads to disability and functional decline. Because patients usually develop RA in mid-life, they may experience its consequences for 20–30 years or longer. Proinflammatory cytokines, notably interleukin (IL)-1 and tumour necrosis factor-α, are believed to play significant pathophysiological roles. Clinical trials of biologicals that block these cytokines confirm their importance.

Anakinra, a recombinant human IL-1 receptor antagonist, improves clinical signs and symptoms, and slows radiographic progression in patients with active RA. In clinical trials, patients receiving anakinra doses >1 mg/kg, whether administered alone or in combination with methotrexate, were two to three times more likely than patients receiving placebo to achieve a sustained ACR20 (American College of Rheumatology criteria) response. Notably, bone erosion slows to a greater extent and shows accelerated benefit when anakinra treatment is continued for periods beyond 24 weeks. Anakinra has a rapid onset of action, with substantial improvements in biochemical indices (C-reactive protein) seen within 1 week and clinical responses (ACR20 or joint counts) seen within 4 weeks of starting treatment.

Anakinra is generally well tolerated, with injection site reactions being the most common adverse event. These reactions are generally mild and typically resolve within 2–3 weeks of treatment. The anakinra product labelling does include a warning regarding an increased risk of infections of 2% in anakinra-treated patients versus <1% in patients receiving placebo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lipsky PE. Rheumatoid arthritis. In: Braunwald E, Fauci AS, Kasper DL, et al., editors. Harrison’s principles of internal medicine. 15th ed. New York: McGraw-Hill, 2001: 1928–37

    Google Scholar 

  2. Fuchs HA, Kaye JJ, Callahan LF, et al. Evidence of significant radiographic damage in rheumatoid arthritis within the first 2 years of disease. J Rheumatol 1989; 16: 585–91

    PubMed  CAS  Google Scholar 

  3. McGonagle D, Conaghan PG, O’Connor P, et al. The relationship between synovitis and bone changes in early untreated rheumatoid arthritis: a controlled magnetic resonance imaging study. Arthritis Rheum 1999; 42: 1706–11

    Article  PubMed  CAS  Google Scholar 

  4. Klarlund M, Ostergaard M, Jensen KE, et al. Magnetic resonance imaging, radiography, and scintigraphy of the finger joints: one year follow up of patients with early arthritis. Ann Rheum Dis 2000; 59: 521–8

    Article  PubMed  CAS  Google Scholar 

  5. Sharp JT, Wolfe F, Mitchell DM, et al. The progression of erosion and joint space narrowing scores in rheumatoid arthritis during the first twenty-five years of disease. Arthritis Rheum 1991; 34: 660–8

    Article  PubMed  CAS  Google Scholar 

  6. Pincus T, Callahan LF, Sale WG, et al. Severe functional declines, work disability, and increased mortality in seventy-five rheumatoid arthritis patients studied over nine years. Arthritis Rheum 1984; 27: 864–72

    Article  PubMed  CAS  Google Scholar 

  7. Sherrer YS, Bloch DA, Mitchell DM, et al. The development of disability in rheumatoid arthritis. Arthritis Rheum 1986; 29: 494–500

    Article  PubMed  CAS  Google Scholar 

  8. Pincus T, Brooks RH, Callahan LF. Prediction of long-term mortality in patients with rheumatoid arthritis according to a simple questionnaire and joint count measures. Ann Intern Med 1994; 120: 26–34

    PubMed  CAS  Google Scholar 

  9. Pincus T, Callahan LF. Taking mortality in rheumatoid arthritis seriously: predictive markers, socioeconomic status and comorbidity. J Rheumatol 1986; 13: 841–5

    PubMed  CAS  Google Scholar 

  10. Morand EF, McCloud PI, Littlejohn GO. Life table analysis of 879 treatment episodes with slow-acting antirheumatic drugs in community rheumatology practice. J Rheumatol 1992; 19: 704–8

    PubMed  CAS  Google Scholar 

  11. Maetzel A, Wong A, Strand V, et al. Meta-analysis of treatment termination rates among rheumatoid arthritis patients receiving disease-modifying anti-rheumatic drugs. Rheumatology (Oxford) 2000; 39: 975–81

    Article  CAS  Google Scholar 

  12. Weinblatt ME, Trentham DE, Fraser PA, et al. Long-term prospective trial of low-dose methotrexate in rheumatoid arthritis. Arthritis Rheum 1988; 31: 167–75

    Article  PubMed  CAS  Google Scholar 

  13. Rich E, Moreland LW, Alarcon GS. Paucity of radiographic progression in rheumatoid arthritis treated with methotrexate as the first disease modifying antirheumatic drug. J Rheumatol 1999; 26: 259–61

    PubMed  CAS  Google Scholar 

  14. Fox RI, Herrmann ML, Frangou CG, et al. Mechanism of action for leflunomide in rheumatoid arthritis. Clin Immunol 1999; 93: 198–208

    Article  PubMed  CAS  Google Scholar 

  15. Strand V, Cohen S, Schiff M, et al. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Arch Intern Med 1999; 159: 2542–50

    Article  PubMed  CAS  Google Scholar 

  16. Sharp JT, Strand V, Leung H, et al. Treatment with leflunomide slows radiographic progression of rheumatoid arthritis: results from three randomized, controlled trials of leflunomide in patients with active rheumatoid arthritis. Arthritis Rheum 2000; 43: 495–505

    Article  PubMed  CAS  Google Scholar 

  17. Maini R, St Clair EW, Breedveld F, et al. Infliximab (chimeric anti-tumor necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. Lancet 1999; 354: 1932–9

    Article  PubMed  CAS  Google Scholar 

  18. Lipsky PE, van der Heijde DMFM, St Clair EW, et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N Engl J Med 2000; 343: 1594–602

    Article  PubMed  CAS  Google Scholar 

  19. Weinblatt ME, Kremer JM, Bankhurst AD, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999; 340: 253–9

    Article  PubMed  CAS  Google Scholar 

  20. Kress S. Adalimumab: for use in the treatment of rheumatoid arthritis. Clinical review, Abbott, biologic licensing application STN 125057. Center for Biologies Evaluation and Research, Office of Therapeutics Research and Review, Division of Clinical Trial Design and Analysis, Immunology and Infectious Diseases Branch [online]. Available from URL: http://www.fda.gov/cder/biologics/products/adalabbl23102.htm [Accessed 2004 Jul 9]

  21. Bathon JM, Martin RW, Fleischmann RM, et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 2000; 343: 1586–93

    Article  PubMed  CAS  Google Scholar 

  22. van den Berg WB. Anti-cytokine therapy in chronic destructive arthritis. Arthritis Res 2001; 3: 18–26

    Article  PubMed  Google Scholar 

  23. Dinarello CA. Biological basis for interleukin-1 in disease. Blood 1996; 87: 2095–147

    PubMed  CAS  Google Scholar 

  24. Lindsley HB, Smith DD, Cohick CB, et al. Proinflammatory cytokines enhance human synoviocyte expression of intercellular adhesion molecule-1 (ICAM-1). Clin Immunol Immunopathol 1993; 68: 311–20

    Article  PubMed  CAS  Google Scholar 

  25. Proudman SM, Cleland LG, Mayrhofer G. Effects of tumor necrosis factor-α, interleukin 1β, and activated peripheral blood mononuclear cells on the expression of adhesion molecules and recruitment of leukocytes in rheumatoid synovial xenografts in SCID mice. J Rheumatol 1999; 26: 1877–89

    PubMed  CAS  Google Scholar 

  26. Dayer JM, de Rochemonteix B, Burrus B, et al. Human recombinant interleukin 1 stimulates collagenase and prostaglandin E2 production by human synovial cells. J Clin Invest 1986; 77: 645–8

    Article  PubMed  CAS  Google Scholar 

  27. Crofford LJ, Wilder RL, Ristimaki AP, et al. Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissue: effects of interleukin-1 beta, phorbol ester, and corticosteroids. J Clin Invest 1994; 93: 1095–101

    Article  PubMed  CAS  Google Scholar 

  28. Grabowski PS, Macpherson H, Ralston SH. Nitric oxide production in cells derived from the human joint. Br J Rheumatol 1996; 35: 207–12

    Article  PubMed  CAS  Google Scholar 

  29. MacNaul KL, Chartrain N, Lark M, et al. Discoordinate expression of stromelysin, collagenase, and tissue inhibitor of metal-loproteinases-1 in rheumatoid human synovial fibroblasts: synergistic effects of interleukin-1 and tumor necrosis factor-alpha on stromelysin expression. J Biol Chem 1990; 265: 17238–45

    PubMed  CAS  Google Scholar 

  30. McDonnell J, Hoerrner LA, Lark MW, et al. Recombinant human interleukin-1β-induced increase in levels of proteogly-cans, stromelysin, and leukocytes in rabbit synovial fluid. Arthritis Rheum 1992; 35: 799–805

    Article  PubMed  CAS  Google Scholar 

  31. Jimi E, Nakamura I, Duong LT, et al. Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp Cell Res 1999; 247: 84–93

    Article  PubMed  CAS  Google Scholar 

  32. Arend WP, Malyak M, Guthridge CJ, et al. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 1998; 16: 27–55

    Article  PubMed  CAS  Google Scholar 

  33. Seckinger P, Lowenthal JW, Williamson K, et al. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J Immunol 1987; 139: 1546–9

    PubMed  CAS  Google Scholar 

  34. Seckinger P, Klein-Nulend J, Alander C, et al. Natural and recombinant human IL-1 receptor antagonists block the effects of IL-1 on bone resorption and prostaglandin production. J Immunol 1990; 145: 4181–4

    PubMed  CAS  Google Scholar 

  35. Arend WP, Welgus HG, Thompson RC, et al. Biological properties of recombinant human monocyte-derived interleukin 1 receptor antagonist. J Clin Invest 1990; 85: 1694–7

    Article  PubMed  CAS  Google Scholar 

  36. Smith RJ, Chin JE, Sam LM, et al. Biologic effects of an interleukin-1 receptor antagonist protein on interleukin-1-stimulated cartilage erosion and chondrocyte responsiveness. Arthritis Rheum 1991; 34: 78–83

    Article  PubMed  CAS  Google Scholar 

  37. Firestein GS, Boyle DL, Yu C, et al. Synovial interleukin-1 receptor antagonist and interleukin-1 balance in rheumatoid arthritis. Arthritis Rheum 1994; 37: 644–52

    Article  PubMed  CAS  Google Scholar 

  38. Fujikawa Y, Shingu M, Torisu T, et al. Interleukin-1 receptor antagonist production in cultured synovial cells from patients with rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 1995; 54: 318–20

    Article  PubMed  CAS  Google Scholar 

  39. Horai R, Saijo S, Tanioka H, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 2000; 191: 313–20

    Article  PubMed  CAS  Google Scholar 

  40. Makarov SS, Olsen JC, Johnston WN, et al. Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist cDNA. Proc Natl Acad Sci U S A 1996; 93: 402–6

    Article  PubMed  CAS  Google Scholar 

  41. Otani K, Nita I, Macaulay W, et al. Suppression of antigen-induced arthritis in rabbits by ex vivo gene therapy. J Immunol 1996; 156: 3558–62

    PubMed  CAS  Google Scholar 

  42. Muller-Ladner U, Roberts CR, Franklin BN, et al. Human IL-1Ra gene transfer into human synovial fibroblasts is chondroprotective. J Immunol 1997; 158: 3492–8

    PubMed  CAS  Google Scholar 

  43. Bendele A, McAbee T, Sennello G, et al. Efficacy of sustained blood levels of interelukin-1 receptor antagonist in animal models: comparison of efficacy in animal models with human clinical data. Arthritis Rheum 1999; 42: 498–506

    Article  PubMed  CAS  Google Scholar 

  44. Kineret® [package insert]. Thousand Oaks (CA): Amgen Inc., 2004 Apr

  45. Bresnihan B, Alvaro-Gracia JM, Cobby M, et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 1998; 41(12): 2196–204

    Article  PubMed  CAS  Google Scholar 

  46. Cohen S, Hurd E, Cush J, et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist (IL-1ra), in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2002; 46: 614–24

    Article  PubMed  CAS  Google Scholar 

  47. Jiang Y, Genant HK, Watt I, et al. A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum 2000; 43: 1001–9

    Article  PubMed  CAS  Google Scholar 

  48. Shergy WJ, Cohen S, Greenwald S, et al. Anakinra (Kineret®) inhibits the progression of radiographically measured joint destruction in rheumatoid arthritis [abstract]. American College of Rheumatology 2002 Annual Meeting; 2002 Oct 25–29; New Orleans

  49. Felson DT, Anderson JJ, Boers M, et al. American College of Rheumatology preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum 1995; 38: 727–35

    Article  PubMed  CAS  Google Scholar 

  50. Miller DM, Schiff MH, Cohen SB, et al. Durability and rapidity of response for rheumatoid arthritis patients receiving therapy with anakinra (IL-IRa) [abstract]. Ann Rheum Dis 2001; 60 Suppl. 1: S171

    Google Scholar 

  51. Fleischmann RM, Schechtman J, Bennett R, et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (rmetHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheum 2003; 48: 927–34

    Article  PubMed  CAS  Google Scholar 

  52. Fleischmann RM, Tesser JRP, Pirow B, et al. Long-term safety of anakinra (interleukin-1 receptor antagonist) in patients receiving standard treatments for rheumatoid arthritis: a 36-month update from a large phase 3 study [abstract]. American College of Rheumatology 2002 Annual Meeting; 2002 Oct 25–29; New Orleans

  53. Nuki G, Bresnihan B, Bear MB, et al. Long-term safety and maintenance of clinical improvement following treatment with anakinra (recombinant human interleukin-1 receptor antagonist) in patients with rheumatoid arthritis. Arthritis Rheum 2002; 46: 2838–46

    Article  PubMed  CAS  Google Scholar 

  54. Le Loet X, Nordstrom D, Rodriguez M, et al. Safety of anakinra (Kineret) added to traditional disease-modifying antirheumatic drug therapy in patients with active rheumatoid arthritis: results of the OMEGA trial [poster no. 174]. American College of Rheumatology 2003 Annual Meeting; 2003 Oct 23–28; Orlando

  55. Enbrel® [package insert]. Thousand Oaks (CA): Immunex Corp., 2004 Apr [online]. Available from URL: http://www.wyeth.com/content/ShowLabeling.asp?.id=101 [Accessed 2004 Jul 9]

  56. Humira™ [package insert]. North Chicago (IL): Abbott Laboratories, 2003 Jan [online]. Available from URL: http://www.rxabbott.com/pdf/humira.pdf [Accessed 2004 Jul 9]

  57. Remicade® [package insert]. Malvern (PA): Centocor Inc., 2004 Mar

  58. Schiff MH. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann Rheum Dis 2000; 59 Suppl. 1: i103–8

    Article  PubMed  CAS  Google Scholar 

  59. Gibofsky A, Cush J, Schiff MH, et al. RADIUS 1: comparison of disease characteristics of patients with rheumatoid arthritis initiating biologic therapy for the first time versus other DMARD therapy [abstract]. European League Against Rheumatism (EULAR) Meeting; 2003 Jun 18–21; Lisbon

  60. Schiff MH, Keystone EC, Gibofsky A, et al. An evaluation of the use of anakinra by rheumatoid arthritis patients previously treated with a TNF inhibitor [abstract]. European League Against Rheumatism (EULAR) Meeting; 2003 Jun 18–21; Lisbon

  61. Data on file. Thousand Oaks (CA): Amgen Inc., 2004

  62. Kineret® [package insert]. Thousand Oaks (CA): Amgen Inc., 2002 Oct

  63. Genovese MC, Cohen SB, Moreland LW, et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum 2004; 50: 1412–9

    Article  PubMed  CAS  Google Scholar 

  64. Rooney T, Madigan A, Greenan L, et al. Combination therapy with anakinra and PEGylated soluble tumor necrosis factor receptor type I (pegsunercept) in rheumatoid arthritis (RA): preliminary analysis of clinical, functional, synovial tissue, and radiographic outcomes from a phase II, open-label, mode of action study [abstract]. American College of Rheumatology (ACR) 2003 Annual Meeting; 2003 Oct 23–28; Orlando

Download references

Acknowledgements

The author has received past support from Amgen, Inc. in the form of grants and as a consultant/speaker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Schiff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiff, M.H. Durability and Rapidity of Response to Anakinra in Patients with Rheumatoid Arthritis. Drugs 64, 2493–2501 (2004). https://doi.org/10.2165/00003495-200464220-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200464220-00001

Keywords

Navigation