Skip to main content
Log in

Infections Associated with Medical Devices

Pathogenesis, Management and Prophylaxis

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The insertion or implantation of foreign bodies has become an indispensable part in almost all fields of medicine. However, medical devices are associated with a definitive risk of bacterial and fungal infections. Foreign body-related infections (FBRIs), particularly catheter-related infections, significantly contribute to the increasing problem of nosocomial infections. While a variety of microorganisms may be involved as pathogens, staphylococci account for the majority of FBRIs. Their ability to adhere to materials and to promote formation of a biofilm is the most important feature of their pathogenicity. This biofilm on the surface of colonised foreign bodies is regarded as the biological correlative for the clinical experience with FBRI, that is, that the host defence mechanisms often seem to be unable to handle the infection and, in particular, to eliminate the microorganisms from the infected device. Since antibacterial chemotherapy is also frequently not able to cure these infections despite the use of antibacterials with proven in vitro activity, removal of implanted devices is often inevitable and has been standard clinical practice. However, in specific circumstances, such as infections of implanted medical devices with coagulase-negative staphylococci, a trial of salvage of the device may be justified. All FBRIs should be treated with antibacterials to which the pathogens have been shown to be susceptible. In addition to systemic antibacterial therapy, an intraluminal application of antibacterial agents, referred to as the ‘antibiotic-lock’ technique, should be considered to circumvent the need for removal, especially in patients with implanted long-term catheters.

To reduce the incidence of intravascular catheter-related bloodstream infections, specific guidelines comprising both technological and nontechnological strategies for prevention have been established. Quality assurance, continuing education, choice of the catheter insertion site, hand hygiene and aseptic techniques are aspects of particular interest. Furthermore, all steps in the pathogenesis of biofilm formation may represent targets against which prevention strategies may be directed. Alteration of the foreign body material surface may lead to a change in specific and nonspecific interactions with micro-organisms and, thus, to a reduced microbial adherence. Medical devices made out of a material that would be antiadhesive or at least colonisation resistant would be the most suitable candidates to avoid colonisation and subsequent infection. Another concept for the prevention of FBRIs involves the impregnation of devices with various substances such as antibacterials, antiseptics and/or metals. Finally, further studies are needed to translate the knowledge on the mechanisms of biofilm formation into applicable therapeutic and preventive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2
Table III
Table IV
Table V
Table VI
Table VII
Table VIII

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. NNIS System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2003, issued August 2003. Am J Infect Control 2003 Dec; 31(8): 481–98

    Article  Google Scholar 

  2. Mermel LA. Prevention of intravascular catheter-related infections. Ann Intern Med 2000 Mar 7; 132(5): 391–402

    PubMed  CAS  Google Scholar 

  3. Mermel LA. Defining intravascular catheter-related infections: a plea for uniformity. Nutrition 1997 Apr; 13 (4 Suppl.): 2S–4S

    Article  PubMed  CAS  Google Scholar 

  4. Samore MH, Burke JP. Infections of long intravenous lines: new developments and controversies. Curr Clin Top Infect Dis 2000; 20: 256–70

    PubMed  CAS  Google Scholar 

  5. Sitges-Serra A, Girvent M. Catheter-related bloodstream infections. World J Surg 1999 Jun; 23(6): 589–95

    Article  PubMed  CAS  Google Scholar 

  6. Garner JS, Jarvis WR, Emori TG, et al. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988 Jun; 16(3): 128–40

    Article  PubMed  CAS  Google Scholar 

  7. Eggimann P, Pittet D. Overview of catheter-related infections with special emphasis on prevention based on educational programs. Clin Microbiol Infect 2002 May; 8(5): 295–309

    Article  PubMed  CAS  Google Scholar 

  8. Pearson ML. Guideline for prevention of intravascular device-related infections: the Hospital Infection Control Practices Advisory Committee. Am J Infect Control 1996 Aug; 24(4): 262–93

    Article  PubMed  CAS  Google Scholar 

  9. Bouza E, Burillo A, Munoz P. Catheter-related infections: diagnosis and intravascular treatment. Clin Microbiol Infect 2002 May; 8(5): 265–74

    Article  PubMed  CAS  Google Scholar 

  10. Hodge D, Puntis JW. Diagnosis, prevention, and management of catheter related bloodstream infection during long term parenteral nutrition. Arch Dis Child Fetal Neonatal Ed 2002 Jul; 87(1): F21–4

    Article  PubMed  CAS  Google Scholar 

  11. Raad II, Hanna HA. Intravascular catheter-related infections: new horizons and recent advances. Arch Intern Med 2002 Apr 22; 162(8): 871–8

    Article  PubMed  CAS  Google Scholar 

  12. Kristinsson KG. Diagnosis of catheter-related infections. In: Seifert H, Jansen B, Farr BM, editors. Catheter-related infections. New York: Marcel Dekker Inc., 1997: 31–57

    Google Scholar 

  13. von Eiff C, Peters G. Pathogenesis and detection of biofilm formation on medical implants. In: Jass J, Surman S, Walker J, editors. Medical biofilms: detection, prevention and control. Chichester: Wiley, 2003: 51–72

    Google Scholar 

  14. Sherertz RJ, Raad II, Belani A, et al. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J Clin Microbiol 1990 Jan; 28(1): 76–82

    PubMed  CAS  Google Scholar 

  15. Maki DG, Weise CE, Sarafin HW. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med 1977 Jun 9; 296(23): 1305–9

    Article  PubMed  CAS  Google Scholar 

  16. Siegman-Igra Y, Anglim AM, Shapiro DE, et al. Diagnosis of vascular catheter-related bloodstream infection: a meta-analysis. J Clin Microbiol 1997 Apr; 35(4): 928–36

    PubMed  CAS  Google Scholar 

  17. Blot F, Nitenberg G, Chachaty E, et al. Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 1999 Sep 25; 354(9184): 1071–7

    Article  PubMed  CAS  Google Scholar 

  18. Safdar N, Kluger DM, Maki DG. A review of risk factors for catheter-related bloodstream infection caused by percutaneously inserted, noncuffed central venous catheters: implications for preventive strategies. Medicine (Baltimore) 2002 Nov; 81(6): 466–79

    Article  Google Scholar 

  19. Rello J, Ochagavia A, Sabanes E, et al. Evaluation of outcome of intravenous catheter-related infections in critically ill patients. Am J Respir Crit Care Med 2000 Sep; 162 (3 Pt 1): 1027–30

    PubMed  CAS  Google Scholar 

  20. Dimick JB, Pelz RK, Consunji R, et al. Increased resource use associated with catheter-related bloodstream infection in the surgical intensive care unit. Arch Surg 2001 Feb; 136(2): 229–34

    Article  PubMed  CAS  Google Scholar 

  21. Mermel LA. Correction: catheter catheter-related blood stream infections. Ann Intern Med 2000; 133(5): 395

    Google Scholar 

  22. O’Grady NP, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter-related infections: Centers for Disease Control and Prevention. MMWR Recomm Rep 2002 Aug 9; 51(RR-10): 1–29

    PubMed  Google Scholar 

  23. Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis 2001 Mar; 7(2): 277–81

    Article  PubMed  CAS  Google Scholar 

  24. Hugonnet S, Sax H, Eggimann P, et al. Nosocomial bloodstream infection and clinical sepsis. Emerg Infect Dis 2004; 10(1): 76–81

    Article  PubMed  Google Scholar 

  25. von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2002 Nov; 2(11): 677–85

    Article  Google Scholar 

  26. Peters G, Locci R, Pulverer G. Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J Infect Dis 1982 Oct; 146(4): 479–82

    Article  PubMed  CAS  Google Scholar 

  27. Dickinson GM, Bisno AL. Infections associated with indwelling devices: infections related to extravascular devices. Antimicrob Agents Chemother 1989 May; 33(5): 602–7

    Article  PubMed  CAS  Google Scholar 

  28. Veenstra GJ, Cremers FF, van Dijk H, et al. Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis. J Bacteriol 1996 Jan; 178(2): 537–41

    PubMed  CAS  Google Scholar 

  29. Heilmann C, Hussain M, Peters G, et al. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 1997 Jun; 24(5): 1013–24

    Article  PubMed  CAS  Google Scholar 

  30. Cucarella C, Solano C, Valle J, et al. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 2001 May; 183(9): 2888–96

    Article  PubMed  CAS  Google Scholar 

  31. Tormo MA, Cucarella C, Amorena B, et al. The Bap homolog protein of Staphylococcus epidermis RP62A promotes biofilm formation. EMBL accession number AY028618 [online]. Available from URL: http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?.db=nucleotide&val=13661836 [Accessed 2004 Oct 4]

  32. Muller E, Hübner J, Gutierrez N, et al. Isolation and characterization of transposon mutants of Staphylococcus epidermidis deficient in capsular polysaccharide/adhesin and slime. Infect Immun 1993 Feb; 61(2): 551–8

    PubMed  CAS  Google Scholar 

  33. Shiro H, Muller E, Gutierrez N, et al. Transposon mutants of Staphylococcus epidermidis deficient in elaboration of capsular polysaccharide/adhesin and slime are avirulent in a rabbit model of endocarditis. J Infect Dis 1994 May; 169(5): 1042–9

    Article  PubMed  CAS  Google Scholar 

  34. Herrmann M, Vaudaux PE, Pittet D, et al. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 1988 Oct; 158(4): 693–701

    Article  PubMed  CAS  Google Scholar 

  35. Herrmann M, Hartleib J, Kehrel B, et al. Interaction of von Willebrand factor with Staphylococcus aureus. J Infect Dis1997 Oct; 176(4): 984–91

    Article  PubMed  CAS  Google Scholar 

  36. Dickinson GM, Bisno AL. Infections associated with indwelling devices: concepts of pathogenesis; infections associated with intravascular devices. Antimicrob Agents Chemother 1989 May; 33(5): 597–601

    Article  PubMed  CAS  Google Scholar 

  37. Hussain M, Heilmann C, Peters G, et al. Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microb Pathog 2001 Dec; 31(6): 261–70

    Article  PubMed  CAS  Google Scholar 

  38. Mack D, Fischer W, Krokotsch A, et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 1996 Jan; 178(1): 175–83

    PubMed  CAS  Google Scholar 

  39. Heilmann C, Schweitzer O, Gerke C, et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 1996 Jun; 20(5): 1083–91

    Article  PubMed  CAS  Google Scholar 

  40. Gerke C, Kraft A, Süβmuth R, et al. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 1998 Jul 17; 273(29): 18586–93

    Article  PubMed  CAS  Google Scholar 

  41. Mack D, Rohde H, Dobinsky S, et al. Identification of three essential regulatory gene loci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. Infect Immun 2000 Jul; 68(7): 3799–807

    Article  PubMed  CAS  Google Scholar 

  42. Rupp ME, Ulphani JS, Fey PD, et al. Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immun 1999 May; 67(5): 2656–9

    PubMed  CAS  Google Scholar 

  43. Rupp ME, Ulphani JS, Fey PD, et al. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 1999 May; 67(5): 2627–32

    PubMed  CAS  Google Scholar 

  44. Ziebuhr W, Heilmann C, Götz F, et al. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 1997 Mar; 65(3): 890–6

    PubMed  CAS  Google Scholar 

  45. Dobinsky S, Kiel K, Rohde H, et al. Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 2003 May; 185(9): 2879–86

    Article  PubMed  CAS  Google Scholar 

  46. Hussain M, Herrmann M, von Eiff C, et al. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 1997 Feb; 65(2): 519–24

    PubMed  CAS  Google Scholar 

  47. Peters G, Locci R, Pulverer G. Microbial colonization of prosthetic devices. II: scanning electron microscopy of naturally infected intravenous catheters. Zentralbl Bakteriol Mikrobiol Hyg [B] 1981; 173(5): 293–9

    CAS  Google Scholar 

  48. Davies DG, Parsek MR, Pearson JP, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998 Apr 10; 280(5361): 295–8

    Article  PubMed  CAS  Google Scholar 

  49. Yarwood JM, Bartels DJ, Volper EM, et al. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 2004 Mar; 186(6): 1838–50

    Article  PubMed  CAS  Google Scholar 

  50. Herrmann M, Weyand M, Greshake B, et al. Left ventricular assist device infection is associated with increased mortality but is not a contraindication to transplantation. Circulation 1997 Feb 18; 95(4): 814–7

    Article  PubMed  CAS  Google Scholar 

  51. von Eiff C, Heilmann C, Peters G. New aspects in the molecular basis of polymer-associated infections due to staphylococci. Eur J Clin Microbiol Infect Dis 1999 Dec; 18(12): 843–6

    Article  Google Scholar 

  52. Berns JS. Infection with antimicrobial-resistant microorganisms in dialysis patients. Semin Dial 2003 Jan; 16(1): 30–7

    Article  PubMed  Google Scholar 

  53. Carratalà J. Role of antibiotic prophylaxis for the prevention of intravascular catheter-related infection. Clin Microbiol Infect 2001; 7 Suppl. 4: 83–90

    Article  PubMed  Google Scholar 

  54. Fätkenheuer G, Cornely O, Seifert H. Clinical management of catheter-related infections. Clin Microbiol Infect 2002 Sep; 8(9): 545–50

    Article  PubMed  Google Scholar 

  55. Graninger W, Assadian O, Lagler H, et al. The role of glycopeptides in the treatment of intravascular catheter-related infections. Clin Microbiol Infect 2002 May; 8(5): 310–5

    Article  PubMed  CAS  Google Scholar 

  56. Karchmer AW, Longworth DL. Infections of intracardiac devices. Infect Dis Clin North Am 2002 Jun; 16(2): 477–505, xii

    Article  PubMed  Google Scholar 

  57. Kovalik EC, Schwab SJ. Treatment approaches for infected hemodialysis vascular catheters. Curr Opin Nephrol Hypertens 2002 Nov; 11(6): 593–6

    Article  PubMed  Google Scholar 

  58. Mermel LA, Farr BM, Sherertz RJ, et al. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis 2001 May 1; 32(9): 1249–72

    Article  PubMed  CAS  Google Scholar 

  59. Nichols RL, Raad II. Management of bacterial complications in critically ill patients: surgical wound and catheter-related infections. Diagn Microbiol Infect Dis 1999 Feb; 33(2): 121–30

    Article  PubMed  CAS  Google Scholar 

  60. Oppenheim BA. Optimal management of central venous catheter-related infections: what is the evidence? J Infect 2000 Jan; 40(1): 26–30

    Article  PubMed  CAS  Google Scholar 

  61. Paiva JA, Pereira JM. Treatment of the afebrile patient after catheter withdrawal: drugs and duration. Clin Microbiol Infect 2002 May; 8(5): 290–4

    Article  PubMed  CAS  Google Scholar 

  62. Raad I. Intravascular-catheter-related infections. Lancet 1998 Mar 21; 351(9106): 893–8

    Article  PubMed  CAS  Google Scholar 

  63. Rodríguez-Bano J. Selection of empiric therapy in patients with catheter-related infections. Clin Microbiol Infect 2002 May; 8(5): 275–81

    Article  PubMed  Google Scholar 

  64. Seifert H, Strate A, Pulverer G. Nosocomial bacteremia due to Acinetobacter baumannii: clinical features, epidemiology, and predictors of mortality. Medicine (Baltimore) 1995 Nov; 74(6): 340–9

    Article  CAS  Google Scholar 

  65. Elting LS, Bodey GP. Septicemia due to Xanthomonas species and non-aeruginosa Pseudomonas species: increasing incidence of catheter-related infections. Medicine (Baltimore) 1990 Sep; 69(5): 296–306

    CAS  Google Scholar 

  66. Seifert H, Strate A, Schulze A, et al. Vascular catheter-related bloodstream infection due to Acinetobacter johnsonii (formerly Acinetobacter calcoaceticus var. Iwoffi): report of 13 cases. Clin Infect Dis 1993 Oct; 17(4): 632–6

    Article  PubMed  CAS  Google Scholar 

  67. Benoit JL, Carandang G, Sitrin M, et al. Intraluminal antibiotic treatment of central venous catheter infections in patients receiving parenteral nutrition at home. Clin Infect Dis 1995 Nov; 21(5): 1286–8

    Article  PubMed  CAS  Google Scholar 

  68. Robinson D, Suhocki P, Schwab SJ. Treatment of infected tunneled venous access hemodialysis catheters with guidewire exchange. Kidney Int 1998 Jun; 53(6): 1792–4

    Article  PubMed  CAS  Google Scholar 

  69. Beathard GA. Management of bacteremia associated with tunneled-cuffed hemodialysis catheters. J Am Soc Nephrol 1999 May; 10(5): 1045–9

    PubMed  CAS  Google Scholar 

  70. Martinez E, Mensa J, Rovira M, et al. Central venous catheter exchange by guidewire for treatment of catheter-related bacteraemia in patients undergoing BMT or intensive chemotherapy. Bone Marrow Transplant 1999 Jan; 23(1): 41–4

    Article  PubMed  CAS  Google Scholar 

  71. Shaffer D. Catheter-related sepsis complicating long-term, tunnelled central venous dialysis catheters: management by guidewire exchange. Am J Kidney Dis 1995 Apr; 25(4): 593–6

    Article  PubMed  CAS  Google Scholar 

  72. Schuman ES, Winters V, Gross GF, et al. Management of Hickman catheter sepsis. Am J Surg 1985 May; 149(5): 627–8

    Article  PubMed  CAS  Google Scholar 

  73. Press OW, Ramsey PG, Larson EB, et al. Hickman catheter infections in patients with malignancies. Medicine (Baltimore) 1984 Jul; 63(4): 189–200

    CAS  Google Scholar 

  74. Allison DG, McBain AJ, Gilbert P. Microbial biofilms: problems of control. In: Allison DG, Gilbert P, Lappin-Scott H, et al., editors. Community structure and cooperation in biofilms. Reading: Society for General Microbiology Press, 2000: 309–27

    Chapter  Google Scholar 

  75. Ceri H, Olson ME, Stremick C, et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999 Jun; 37(6): 1771–6

    PubMed  CAS  Google Scholar 

  76. Espersen F, Frimodt-Moller N, Corneliussen L, et al. Effect of treatment with methicillin and gentamicin in a new experimental mouse model of foreign body infection. Antimicrob Agents Chemother 1994 Sep; 38(9): 2047–53

    Article  PubMed  CAS  Google Scholar 

  77. Rachid S, Ohlsen K, Witte W, et al. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 2000 Dec; 44(12): 3357–63

    Article  PubMed  CAS  Google Scholar 

  78. Wilcox MH, Finch RG, Smith DG, et al. Effects of carbon dioxide and sub-lethal levels of antibiotics on adherence of coagulase-negative staphylococci to polystyrene and silicone rubber. J Antimicrob Chemother 1991 May; 27(5): 577–87

    Article  PubMed  CAS  Google Scholar 

  79. Bisognano C, Vaudaux PE, Lew DP, et al. Increased expression of fibronectin-binding proteins by fluoroquinolone-resistant Staphylococcus aureus exposed to subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother 1997 May; 41(5): 906–13

    PubMed  CAS  Google Scholar 

  80. Roehrborn AA, Hansbrough JF, Gualdoni B, et al. Lipid-based slow-release formulation of amikacin sulfate reduces foreign body-associated infections in mice. Antimicrob Agents Chemother 1995 Aug; 39(8): 1752–5

    Article  PubMed  CAS  Google Scholar 

  81. Messing B, Peitra-Cohen S, Debure A, et al. Antibiotic-lock technique: a new approach to optimal therapy for catheter-related sepsis in home-parenteral nutrition patients. JPEN J Parenter Enteral Nutr 1988 Mar; 12(2): 185–9

    Article  PubMed  CAS  Google Scholar 

  82. Kentos A, Struelens MJ, Thys JP. Antibiotic-lock technique for the treatment of central venous catheter infections. Clin Infect Dis 1996 Aug; 23(2): 418–9

    Article  PubMed  CAS  Google Scholar 

  83. Ruiz-Valverde MP, Barbera JR, Segarra A, et al. Successful treatment of catheter-related sepsis and extraluminal catheter thrombosis with vancomycin and fraxiparin without catheter removal. Nephron 1997; 75(3): 354–5

    Article  PubMed  CAS  Google Scholar 

  84. Capdevila JA, Segarra A, Planes AM, et al. Successful treatment of haemodialysis catheter-related sepsis without catheter removal. Nephrol Dial Transplant 1993; 8(3): 231–4

    PubMed  CAS  Google Scholar 

  85. Krishnasami Z, Carlton D, Bimbo L, et al. Management of hemodialysis catheter-related bacteremia with an adjunctive antibiotic lock solution. Kidney Int 2002 Mar; 61(3): 1136–42

    Article  PubMed  Google Scholar 

  86. La Quaglia MP, Caldwell C, Lucas A, et al. A prospective randomized double-blind trial of bolus urokinase in the treatment of established Hickman catheter sepsis in children. J Pediatr Surg 1994 Jun; 29(6): 742–5

    Article  PubMed  Google Scholar 

  87. Jones GR, Konsler GK, Dunaway RP. Urokinase in the treatment of bacteremia and candidemia in patients with right atrial catheters. Am J Infect Control 1996 Jun; 24(3): 160–6

    Article  PubMed  CAS  Google Scholar 

  88. Capdevila JA, Gavalda J, Fortea J, et al. Lack of antimicrobial activity of sodium heparin for treating experimental catheter-related infection due to Staphylococcus aureus using the antibiotic-lock technique. Clin Microbiol Infect 2001 Apr; 7(4): 206–12

    Article  PubMed  CAS  Google Scholar 

  89. Sieradzki K, Roberts RB, Serur D, et al. Heterogeneously vancomycin-resistant Staphylococcus epidermidis strain causing recurrent peritonitis in a dialysis patient during vancomycin therapy. J Clin Microbiol 1999 Jan; 37(1): 39–44

    PubMed  CAS  Google Scholar 

  90. Traub WH, Leonhard B, Bauer D. Taurolidine: in vitro activity against multiple-antibiotic-resistant, nosocomially significant clinical isolates of Staphylococcus aureus, Enterococcus faecium, and diverse Enterobacteriaceae. Chemotherapy 1993 Sep; 39(5): 322–30

    Article  PubMed  CAS  Google Scholar 

  91. Jones DS, Gorman SP, McCafferty DF, et al. The effects of three non-antibiotic, antimicrobial agents on the surface hydrophobicity of certain micro-organisms evaluated by different methods. J Appl Bacteriol 1991 Sep; 71(3): 218–27

    Article  PubMed  CAS  Google Scholar 

  92. Shah CB, Mittelman MW, Costerton JW, et al. Antimicrobial activity of a novel catheter lock solution. Antimicrob Agents Chemother 2002 Jun; 46(6): 1674–9

    Article  PubMed  CAS  Google Scholar 

  93. Dannenberg C, Bierbach U, Rothe A, et al. Ethanol-lock technique in the treatment of bloodstream infections in pediatric oncology patients with broviac catheter. J Pediatr Hematol Oncol 2003 Aug; 25(8): 616–21

    Article  PubMed  Google Scholar 

  94. Arnow PM, Quimosing EM, Beach M. Consequences of intravascular catheter sepsis. Clin Infect Dis 1993 Jun; 16(6): 778–84

    Article  PubMed  CAS  Google Scholar 

  95. Rotstein C, Brock L, Roberts RS. The incidence of first Hickman catheter-related infection and predictors of catheter removal in cancer patients. Infect Control Hosp Epidemiol 1995 Aug; 16(8): 451–8

    Article  PubMed  CAS  Google Scholar 

  96. Perdreau-Remington F, Stefanik D, Peters G, et al. A four-year prospective study on microbial ecology of explanted prosthetic hips in 52 patients with ‘aseptic’ prosthetic joint loosening. Eur J Clin Microbiol Infect Dis 1996 Feb; 15(2): 160–5

    Article  PubMed  CAS  Google Scholar 

  97. Raad I, Davis S, Khan A, et al. Impact of central venous catheter removal on the recurrence of catheter-related coagulase-negative staphylococcal bacteremia. Infect Control Hosp Epidemiol 1992 Apr; 13(4): 215–21

    Article  PubMed  CAS  Google Scholar 

  98. Flynn PM, Shenep JL, Stokes DC, et al. In situ management of confirmed central venous catheter-related bacteremia. Pediatr Infect Dis J 1987 Aug; 6(8): 729–34

    Article  PubMed  CAS  Google Scholar 

  99. Gagnon RF, Richards GK, Subang R. Experimental Staphylococcus epidermidis implant infection in the mouse: kinetics of rifampin and vancomycin action. ASAIO J 1992 Jul; 38(3): M596–9

    Article  PubMed  CAS  Google Scholar 

  100. Gagnon RF, Richards GK, Wiesenfeld L. Staphylococcus epidermidis biofilms: unexpected outcome of double and triple antibiotic combinations with rifampin. ASAIO Trans 1991 Jul; 37(3): M158–60

    PubMed  CAS  Google Scholar 

  101. Curtin J, Cormican M, Fleming G, et al. Linezolid compared with eperezolid, vancomycin, and gentamicin in an in vitro model of antimicrobial lock therapy for Staphylococcus epidermidis central venous catheter-related biofilm infections. Antimicrob Agents Chemother 2003 Oct; 47(10): 3145–8

    Article  PubMed  CAS  Google Scholar 

  102. Boyce JM, Mermel LA, Zervos MJ, et al. Controlling vancomycin-resistant enterococci. Infect Control Hosp Epidemiol 1995 Nov; 16(11): 634–7

    Article  PubMed  CAS  Google Scholar 

  103. Gaillard JL, Merlino R, Pajot N, et al. Conventional and nonconventional modes of vancomycin administration to decontaminate the internal surface of catheters colonized with coagulase-negative staphylococci. JPEN J Parenter Enteral Nutr 1990 Nov; 14(6): 593–7

    Article  PubMed  CAS  Google Scholar 

  104. Staphylococcus aureus resistant to vancomycin: United States, 2002. MMWR Morb Mortal Wkly Rep 2002 Jul 5; 51 (26): 565–7

  105. Vancomycin-resistant Staphylococcus aureus: Pennsylvania, 2002 [published erratum appears in MMWR Morb Mortal Wkly Rep 2002 Oct 18; 51 (41): 931]. MMWR Morb Mortal Wkly Rep 2002 Oct 11; 51 (40): 902

  106. Fowler Jr VG, Sanders LL, Sexton DJ, et al. Outcome of Staphylococcus aureus bacteremia according to compliance with recommendations of infectious diseases specialists: experience with 244 patients. Clin Infect Dis 1998 Sep; 27(3): 478–86

    Article  PubMed  Google Scholar 

  107. Libman H, Arbeit RD. Complications associated with Staphylococcus aureus bacteremia. Arch Intern Med 1984 Mar; 144(3): 541–5

    Article  PubMed  CAS  Google Scholar 

  108. Benezra D, Kiehn TE, Gold JW, et al. Prospective study of infections in indwelling central venous catheters using quantitative blood cultures. Am J Med 1988 Oct; 85(4): 495–8

    Article  PubMed  CAS  Google Scholar 

  109. Dugdale DC, Ramsey PG. Staphylococcus aureus bacteremia in patients with Hickman catheters. Am J Med 1990 Aug; 89(2): 137–41

    Article  PubMed  CAS  Google Scholar 

  110. Williams N, Carlson GL, Scott NA, et al. Incidence and management of catheter-related sepsis in patients receiving home parenteral nutrition. Br J Surg 1994 Mar; 81(3): 392–4

    Article  PubMed  CAS  Google Scholar 

  111. Rubin LG, Shih S, Shende A, et al. Cure of implantable venous port-associated bloodstream infections in pediatric hematology-oncology patients without catheter removal. Clin Infect Dis 1999 Jul; 29(1): 102–5

    Article  PubMed  CAS  Google Scholar 

  112. Fowler Jr VG, Li J, Corey GR, et al. Role of echocardiography in evaluation of patients with Staphylococcus aureus bacteremia: experience in 103 patients. J Am Coll Cardiol 1997 Oct; 30(4): 1072–8

    Article  PubMed  Google Scholar 

  113. Rosen AB, Fowler Jr VG, Corey GR, et al. Cost-effectiveness of transesophageal echocardiography to determine the duration of therapy for intravascular catheter-associated Staphylococcus aureus bacteremia. Ann Intern Med 1999 May 18; 130(10): 810–20

    PubMed  CAS  Google Scholar 

  114. Fowler Jr VG, Olsen MK, Corey GR, et al. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Intern Med 2003 Sep 22; 163(17): 2066–72

    Article  PubMed  Google Scholar 

  115. Raad II, Sabbagh MF. Optimal duration of therapy for catheter-related Staphylococcus aureus bacteremia: a study of 55 cases and review. Clin Infect Dis 1992 Jan; 14(1): 75–82

    Article  PubMed  CAS  Google Scholar 

  116. Malanoski GJ, Samore MH, Pefanis A, et al. Staphylococcus aureus catheter-associated bacteremia: minimal effective therapy and unusual infectious complications associated with arterial sheath catheters. Arch Intern Med 1995 Jun 12; 155(11): 1161–6

    Article  PubMed  CAS  Google Scholar 

  117. Rahal JJ. Preventing second-generation complications due to Staphylococcus aureus. Arch Intern Med 1989 Mar; 149(3): 503–4

    Article  PubMed  CAS  Google Scholar 

  118. Hospital Infection Control Practices Advisory Committee (HICPAC). Recommendations for preventing the spread of vancomycin resistance. Infect Control Hosp Epidemiol 1995 Feb; 16(2): 105–13

    Article  Google Scholar 

  119. Peters G, Becker K. Epidemiology, control and treatment of methicillin-resistant Staphylococcus aureus. Drugs 1996; 52 Suppl. 2: 50–4

    Article  PubMed  Google Scholar 

  120. Levine DP, Fromm BS, Reddy BR. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med 1991 Nov 1; 115(9): 674–80

    PubMed  CAS  Google Scholar 

  121. Jantausch BA, Deville J, Adler S, et al. Linezolid for the treatment of children with bacteremia or nosocomial pneumonia caused by resistant gram-positive bacterial pathogens. Pediatr Infect Dis J 2003 Sep; 22 (9 Suppl.): S164–71

    Article  PubMed  Google Scholar 

  122. Vaudaux P, Francois P, Bisognano C, et al. Comparison of levofloxacin, alatrofloxacin, and vancomycin for prophylaxis and treatment of experimental foreign-body-associated infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2002 May; 46(5): 1503–9

    Article  PubMed  CAS  Google Scholar 

  123. Chuard C, Herrmann M, Vaudaux P, et al. Successful therapy of experimental chronic foreign-body infection due to methicillin-resistant Staphylococcus aureus by antimicrobial combinations. Antimicrob Agents Chemother 1991 Dec; 35(12): 2611–6

    Article  PubMed  CAS  Google Scholar 

  124. Cagni A, Chuard C, Vaudaux PE, et al. Comparison of sparfloxacin, temafloxacin, and ciprofloxacin for prophylaxis and treatment of experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1995 Aug; 39(8): 1655–60

    Article  PubMed  CAS  Google Scholar 

  125. Schaad HJ, Chuard C, Vaudaux P, et al. Teicoplanin alone or combined with rifampin compared with vancomycin for prophylaxis and treatment of experimental foreign body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1994 Aug; 38(8): 1703–10

    Article  PubMed  CAS  Google Scholar 

  126. Schaad HJ, Chuard C, Vaudaux P, et al. Comparative efficacies of imipenem, oxacillin and vancomycin for therapy of chronic foreign body infection due to methicillin-susceptible and -resistant Staphylococcus aureus. J Antimicrob Chemother 1994 Jun; 33(6): 1191–200

    Article  PubMed  CAS  Google Scholar 

  127. Rupp ME, Ulphani J. Efficacy of LY333328 in a rat model of Staphylococcus aureus central venous catheter-associated infection [abstract no. F111]. Programs and Abstracts of the Thirty-Eighth Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA, 1998. Washington, DC: American Society for Microbiology, 1998: 260

    Google Scholar 

  128. Vaudaux P, Francois P, Bisognano C, et al. Comparative efficacy of daptomycin and vancomycin in the therapy of experimental foreign body infection due to Staphylococcus aureus. J Antimicrob Chemother 2003 Jul; 52(1): 89–95

    Article  PubMed  CAS  Google Scholar 

  129. Van Wijngaerden E, Peetermans WE, Vandersmissen J, et al. Foreign body infection: a new rat model for prophylaxis and treatment. J Antimicrob Chemother 1999 Nov; 44(5): 669–74

    Article  PubMed  Google Scholar 

  130. Rupp ME, Fey PD, Longo GM. Effect of LY333328 against vancomycin-resistant Enterococcus faecium in a rat central venous catheter-associated infection model. J Antimicrob Chemother 2001 May; 47(5): 705–7

    Article  PubMed  CAS  Google Scholar 

  131. Kuklin NA, Pancari GD, Tobery TW, et al. Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models. Antimicrob Agents Chemother 2003 Sep; 47(9): 2740–8

    Article  PubMed  CAS  Google Scholar 

  132. Swanson DS. Central venous catheter-related infections due to nontuberculous Mycobacterium species. Pediatr Infect Dis J 1998 Dec; 17(12): 1163–4

    Article  PubMed  CAS  Google Scholar 

  133. Guay DR. Nontuberculous mycobacterial infections. Ann Pharmacother 1996 Jul; 30(7–8): 819–30

    PubMed  CAS  Google Scholar 

  134. Ishida H, Ishida Y, Kurosaka Y, et al. In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Jul; 42(7): 1641–5

    PubMed  CAS  Google Scholar 

  135. Ashby MJ, Neale JE, Knott SJ, et al. Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. J Antimicrob Chemother 1994 Mar; 33(3): 443–52

    Article  PubMed  CAS  Google Scholar 

  136. Gill MV, Ly H, Mueenuddin M, et al. Intravenous line infection due to Ochrobactrum anthropi (CDC Group Vd) in a normal host. Heart Lung 1997 Jul; 26(4): 335–6

    Article  PubMed  CAS  Google Scholar 

  137. Seifert H. Catheter-related infections due to gram-negative bacilli. In: Seifert H, Jansen B, Farr BM, editors. Catheter-related infections. New York: Marcel Dekker, 1997: 111–38

    Google Scholar 

  138. Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol 2003 Jan; 11(1): 30–6

    Article  PubMed  CAS  Google Scholar 

  139. Hazen KC. New and emerging yeast pathogens. Clin Microbiol Rev 1995 Oct; 8(4): 462–78

    PubMed  CAS  Google Scholar 

  140. Sizun J, Karangwa A, Giroux JD, et al. Malassezia furfur-related colonization and infection of central venous catheters: a prospective study in a pediatric intensive care unit. Intensive Care Med 1994 Aug; 20(7): 496–9

    Article  PubMed  CAS  Google Scholar 

  141. Anaissie EJ, Rex JH, Uzun Ö, et al. Predictors of adverse outcome in cancer patients with candidemia. Am J Med 1998 Mar; 104(3): 238–45

    Article  PubMed  CAS  Google Scholar 

  142. Pappas PG, Rex JH, Sobel JD, et al. Guidelines for treatment of candidiasis. Clin Infect Dis 2004 Jan 15; 38(2): 161–89

    Article  PubMed  Google Scholar 

  143. Karlowicz MG, Hashimoto LN, Kelly Jr RE, et al. Should central venous catheters be removed as soon as candidemia is detected in neonates? Pediatrics 2000 Nov; 106(5): E63

    Article  PubMed  CAS  Google Scholar 

  144. Munoz P, Burillo A, Bouza E. Criteria used when initiating antifungal therapy against Candida spp. in the intensive care unit. Int J Antimicrob Agents 2000 Jul; 15(2): 83–90

    Article  CAS  Google Scholar 

  145. Rex JH, Walsh TJ, Sobel JD, et al. Practice guidelines for the treatment of candidiasis: Infectious Diseases Society of America. Clin Infect Dis 2000 Apr; 30(4): 662–78

    Article  PubMed  CAS  Google Scholar 

  146. Kibbler CC, Seaton S, Barnes RA, et al. Management and outcome of bloodstream infections due to Candida species in England and Wales. J Hosp Infect 2003 May; 54(1): 18–24

    Article  PubMed  CAS  Google Scholar 

  147. Nguyen MH, Peacock Jr JE, Tanner DC, et al. Therapeutic approaches in patients with candidemia: evaluation in a multicenter, prospective, observational study. Arch Intern Med 1995 Dec 11; 155(22): 2429–35

    Article  PubMed  CAS  Google Scholar 

  148. Lecciones JA, Lee JW, Navarro EE, et al. Vascular catheter-associated fungemia in patients with cancer: analysis of 155 episodes. Clin Infect Dis 1992 Apr; 14(4): 875–83

    Article  PubMed  CAS  Google Scholar 

  149. Rose HD. Venous catheter-associated candidemia. Am J Med Sci 1978 May; 275(3): 265–9

    Article  PubMed  CAS  Google Scholar 

  150. Barber GR, Brown AE, Kiehn TE, et al. Catheter-related Malassezia furfur fungemia in immunocompromised patients. Am J Med 1993 Oct; 95(4): 365–70

    Article  PubMed  CAS  Google Scholar 

  151. Ostrosky-Zeichner L, Marr KA, Rex JH, et al. Amphotericin B: time for a new ‘gold standard’. Clin Infect Dis 2003 Aug 1; 37(3): 415–25

    Article  PubMed  CAS  Google Scholar 

  152. Rex JH, Bennett JE, Sugar AM, et al. A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia: Candidemia Study Group and the National Institute. N Engl J Med 1994 Nov 17; 331(20): 1325–30

    Article  PubMed  CAS  Google Scholar 

  153. Diekema DJ, Messer SA, Hollis RJ, et al. Activities of caspofungin, itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J Clin Microbiol 2003 Aug; 41(8): 3623–6

    Article  PubMed  CAS  Google Scholar 

  154. Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 2002 Dec 19; 347(25): 2020–9

    Article  PubMed  CAS  Google Scholar 

  155. Kauffman CA, Zarins LT. In vitro activity of voriconazole against Candida species. Diagn Microbiol Infect Dis 1998 May; 31(1): 297–300

    Article  PubMed  CAS  Google Scholar 

  156. Fegeler W, Bille J, Dupont B, et al. Distribution of yeast species in clinical routine diagnostic specimen and their susceptibility to fluconazole, voriconazole and flucytosine. Mycoses 1999; 42: 174–5

    Google Scholar 

  157. Patron RL, Climo MW, Goldstein BP, et al. Lysostaphin treatment of experimental aortic valve endocarditis caused by a Staphylococcus aureus isolate with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 1999 Jul; 43(7): 1754–5

    PubMed  CAS  Google Scholar 

  158. von Eiff C, Kokai-Kun JF, Becker K, et al. In vitro activity of recombinant lysostaphin against Staphylococcus aureus isolates from anterior nares and blood. Antimicrob Agents Chemother 2003 Nov; 47(11): 3613–5

    Article  CAS  Google Scholar 

  159. Wu JA, Kusuma C, Mond JJ, et al. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother 2003 Nov; 47(11): 3407–14

    Article  PubMed  CAS  Google Scholar 

  160. Johansen C, Falholt P, Gram L. Enzymatic removal and disinfection of bacterial biofilms. Appl Environ Microbiol 1997 Sep; 63(9): 3724–8

    PubMed  CAS  Google Scholar 

  161. Dewhurst E, Rawson DM, Steele GC. The use of a model system to compare the efficiency of ultrasound and agitation in the recovery of Bacillus subtilis spores from polymer surfaces. J Appl Bacteriol 1986 Oct; 61(4): 357–63

    Article  PubMed  CAS  Google Scholar 

  162. Carmen JC, Roeder BL, Nelson JL, et al. Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo. J Biomater Appl 2004 Apr; 18(4): 237–45

    Article  PubMed  CAS  Google Scholar 

  163. Rediske AM, Roeder BL, Nelson JL, et al. Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob Agents Chemother 2000 Mar; 44(3): 771–2

    Article  PubMed  CAS  Google Scholar 

  164. Pitt WG, Ross SA. Ultrasound increases the rate of bacterial cell growth. Biotechnol Prog 2003 May; 19(3): 1038–44

    Article  PubMed  CAS  Google Scholar 

  165. Rosenthal VD, Guzman S, Pezzotto SM, et al. Effect of an infection control program using education and performance feedback on rates of intravascular device-associated bloodstream infections in intensive care units in Argentina. Am J Infect Control 2003 Nov; 31(7): 405–9

    Article  PubMed  Google Scholar 

  166. Sherertz RJ, Ely EW, Westbrook DM, et al. Education of physicians-in-training can decrease the risk for vascular catheter infection. Ann Intern Med 2000 Apr 18; 132(8): 641–8

    PubMed  CAS  Google Scholar 

  167. Eggimann P, Harbarth S, Constantin MN, et al. Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. Lancet 2000 May 27; 355(9218): 1864–8

    Article  PubMed  CAS  Google Scholar 

  168. Soifer NE, Borzak S, Edlin BR, et al. Prevention of peripheral venous catheter complications with an intravenous therapy team: a randomized controlled trial. Arch Intern Med 1998 Mar 9; 158(5): 473–7

    Article  PubMed  CAS  Google Scholar 

  169. Fridkin SK, Pear SM, Williamson TH, et al. The role of understaffing in central venous catheter-associated bloodstream infections. Infect Control Hosp Epidemiol 1996 Mar; 17(3): 150–8

    Article  PubMed  CAS  Google Scholar 

  170. Bertone SA, Fisher MC, Mortensen JE. Quantitative skin cultures at potential catheter sites in neonates. Infect Control Hosp Epidemiol 1994 May; 15(5): 315–8

    Article  PubMed  CAS  Google Scholar 

  171. Goetz AM, Wagener MM, Miller JM, et al. Risk of infection due to central venous catheters: effect of site of placement and catheter type. Infect Control Hosp Epidemiol 1998 Nov; 19(11): 842–5

    Article  PubMed  CAS  Google Scholar 

  172. Randolph AG, Cook DJ, Gonzales CA, et al. Ultrasound guidance for placement of central venous catheters: a metaanalysis of the literature. Crit Care Med 1996 Dec; 24(12): 2053–8

    Article  PubMed  CAS  Google Scholar 

  173. Heard SO, Wagle M, Vijayakumar E, et al. Influence of triplelumen central venous catheters coated with chlorhexidine and silver sulfadiazine on the incidence of catheter-related bacteremia. Arch Intern Med 1998 Jan 12; 158(1): 81–7

    Article  PubMed  CAS  Google Scholar 

  174. Richet H, Hubert B, Nitemberg G, et al. Prospective multicenter study of vascular-catheter-related complications and risk factors for positive central-catheter cultures in intensive care unit patients. J Clin Microbiol 1990 Nov; 28(11): 2520–5

    PubMed  CAS  Google Scholar 

  175. Merrer J, De Jonghe B, Golliot F, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 2001 Aug 8; 286(6): 700–7

    Article  PubMed  CAS  Google Scholar 

  176. Maki DG, Mermel LA. Infections due to infusion therapy. In: Bennett JV, Brachmann PS, editors. Hospital infections. Philadelphia (PA): Lippincott-Raven, 1998: 689–724

    Google Scholar 

  177. MacDonald A, Dinah F, Mackenzie D, et al. Performance feedback of hand hygiene, using alcohol gel as the skin decontaminant, reduces the number of inpatients newly affected by MRSA and antibiotic costs. J Hosp Infect 2004 Jan; 56(1): 56–63

    Article  PubMed  CAS  Google Scholar 

  178. Pittet D, Hugonnet S, Harbarth S, et al. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene: Infection Control Programme. Lancet 2000 Oct 14; 356(9238): 1307–12

    Article  PubMed  CAS  Google Scholar 

  179. Raad II, Hohn DC, Gilbreath BJ, et al. Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 1994 Apr; 15 (4 Pt 1): 231–8

    Article  PubMed  CAS  Google Scholar 

  180. Galway R, Harrod ME, Crisp J, et al. Central venous access and handwashing: variability in policies and practices. Paediatr Nurs 2003 Dec; 15(10): 14–8

    PubMed  Google Scholar 

  181. Boyce JM, Pittet D. Guideline for Hand Hygiene in Health-Care Settings: recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/ IDSA Hand Hygiene Task Force. Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America. MMWR Recomm Rep 2002 Oct 25; 51(RR-16): 1–45

    PubMed  Google Scholar 

  182. Safdar N, Maki DG. The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med 2004 Jan; 30(1): 62–7

    Article  PubMed  Google Scholar 

  183. Clemence MA, Walker D, Farr BM. Central venous catheter practices: results of a survey. Am J Infect Control 1995 Feb; 23(1): 5–12

    Article  PubMed  CAS  Google Scholar 

  184. Humar A, Ostromecki A, Direnfeld J, et al. Prospective randomized trial of 10% povidone-iodine versus 0.5% tincture of chlorhexidine as cutaneous antisepsis for prevention of central venous catheter infection. Clin Infect Dis 2000 Oct; 31(4): 1001–7

    Article  PubMed  CAS  Google Scholar 

  185. Maki DG, Ringer M, Alvarado CJ. Prospective randomised trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet 1991 Aug 10; 338(8763): 339–43

    Article  PubMed  CAS  Google Scholar 

  186. Garland JS, Buck RK, Maloney P, et al. Comparison of 10% povidone-iodine and 0.5% chlorhexidine gluconate for the prevention of peripheral intravenous catheter colonization in neonates: a prospective trial. Pediatr Infect Dis J 1995 Jun; 14(6): 510–6

    Article  PubMed  CAS  Google Scholar 

  187. Maki DG, Ringer M. Evaluation of dressing regimens for prevention of infection with peripheral intravenous catheters: gauze, a transparent polyurethane dressing, and an iodophortransparent dressing. JAMA 1987 Nov 6; 258(17): 2396–403

    Article  PubMed  CAS  Google Scholar 

  188. Hoffmann KK, Weber DJ, Samsa GP, et al. Transparent polyurethane film as an intravenous catheter dressing: a metaanalysis of the infection risks. JAMA 1992 Apr 15; 267(15): 2072–6

    Article  PubMed  CAS  Google Scholar 

  189. Maki DG, Mermel LA, Kluger DM. The efficacy of a chlorhexidine-impregnated sponge (biopatch) for the prevention of intravascular catheter-related infection: a prospective, randomized, controlled, multicenter trial [abstract no. 1430]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy of the American Society for Microbiology; 2000 Sep 17–20; Toronto

  190. Yamamoto AJ, Solomon JA, Soulen MC, et al. Sutureless securement device reduces complications of peripherally inserted central venous catheters. J Vasc Interv Radiol 2002 Jan; 13(1): 77–81

    Article  PubMed  Google Scholar 

  191. Maki DG, Ringer M. Risk factors for infusion-related phlebitis with small peripheral venous catheters: a randomized controlled trial. Ann Intern Med 1991 May 15; 114(10): 845–54

    PubMed  CAS  Google Scholar 

  192. Tully JL, Friedland GH, Baldini LM, et al. Complications of intravenous therapy with steel needles and Teflon catheters: a comparative study. Am J Med 1981 Mar; 70(3): 702–6

    Article  PubMed  CAS  Google Scholar 

  193. Ball PA. Intravenous in-line filters: filtering the evidence. Curr Opin Clin Nutr Metab Care 2003 May; 6(3): 319–25

    PubMed  Google Scholar 

  194. Maddox RR, John Jr JF, Brown LL, et al. Effect of inline filtration on postinfusion phlebitis. Clin Pharm 1983 Jan; 2(1): 58–61

    PubMed  CAS  Google Scholar 

  195. Ascher DP, Shoupe BA, Maybee D, et al. Persistent catheter-related bacteremia: clearance with antibiotics and urokinase. J Pediatr Surg 1993 Apr; 28(4): 627–9

    Article  PubMed  CAS  Google Scholar 

  196. Khoury AE, Lam K, Ellis B, et al. Prevention and control of bacterial infections associated with medical devices. ASAIO J 1992 Jul; 38(3): M174–8

    Article  PubMed  CAS  Google Scholar 

  197. Rediske AM, Roeder BL, Brown MK, et al. Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model. Antimicrob Agents Chemother 1999 May; 43(5): 1211–4

    PubMed  CAS  Google Scholar 

  198. Bridgett MJ, Davies MC, Denyer SP. Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials 1992; 13(7): 411–6

    Article  PubMed  CAS  Google Scholar 

  199. Desai NP, Hossainy SF, Hubbell JA. Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 1992; 13(7): 417–20

    Article  PubMed  CAS  Google Scholar 

  200. Dunkirk SG, Gregg SL, Duran LW, et al. Photochemical coatings for the prevention of bacterial colonization. J Biomater Appl 1991 Oct; 6(2): 131–56

    Article  PubMed  CAS  Google Scholar 

  201. Tebbs SE, Sawyer A, Elliott TS. Influence of surface morphology on in vitro bacterial adherence to central venous catheters. Br J Anaesth 1994 May; 72(5): 587–91

    Article  PubMed  CAS  Google Scholar 

  202. Tebbs SE, Elliott TS. Modification of central venous catheter polymers to prevent in vitro microbial colonisation. Eur J Clin Microbiol Infect Dis 1994 Feb; 13(2): 111–7

    Article  PubMed  CAS  Google Scholar 

  203. Jansen B. New concepts in the prevention of polymer-associated foreign body infections. Zentralbl Bakteriol 1990 Apr; 272(4): 401–10

    Article  PubMed  CAS  Google Scholar 

  204. Jansen B, Schareina S, Steinhauser H, et al. Development of polymers with antiinfective properties. Polym Mater Sci Eng 1987; 57: 43–6

    CAS  Google Scholar 

  205. Han DK, Park KD, Kim YH. Sulfonated poly (ethylene oxide)-grafted polyurethane copolymer for biomedical applications. J Biomater Sci Polym Ed 1998; 9(2): 163–74

    Article  PubMed  CAS  Google Scholar 

  206. Baumgartner JN, Yang CZ, Cooper SL. Physical property analysis and bacterial adhesion on a series of phosphonated polyurethanes. Biomaterials 1997 Jun; 18(12): 831–7

    Article  PubMed  CAS  Google Scholar 

  207. Kohnen W, Jansen B. Changing material surface chemistry for preventing bacterial adhesion. In: An YH, Friedman RJ, editors. Handbook of bacterial adhesion. Totowa (NJ): Humana Press, 2000: 581–9

    Chapter  Google Scholar 

  208. An YH, Blair BK, Martin KL, et al. Macromolecule surface coating for preventing bacterial adhesion. In: YH An, Friedman RJ, editors. Handbook of bacterial adhesion. Totowa (NJ): Humana Press, 2000: 609–25

    Chapter  Google Scholar 

  209. Jansen B, Kohnen W. Prevention of biofilm formation by polymer modification. J Ind Microbiol 1995 Oct; 15(4): 391–6

    Article  PubMed  CAS  Google Scholar 

  210. Marcinko DE. Gentamicin-impregnated PMMA beads: an introduction and review. J Foot Surg 1985 Mar; 24(2): 116–21

    PubMed  CAS  Google Scholar 

  211. Welch A. Antibiotics in acrylic bone cement: in vitro studies. J Biomed Mater Res 1978 Sep; 12(5): 679–700

    Article  PubMed  CAS  Google Scholar 

  212. Moore WS, Chvapil M, Seiffert G, et al. Development of an infection-resistant vascular prosthesis. Arch Surg 1981 Nov; 116(11): 1403–7

    Article  PubMed  CAS  Google Scholar 

  213. Powell TW, Burnham SJ, Johnson Jr G. A passive system using rifampin to create an infection-resistant vascular prosthesis. Surgery 1983 Nov; 94(5): 765–9

    PubMed  CAS  Google Scholar 

  214. McDougal EG, Burnham SJ, Johnson Jr G. Rifampin protection against experimental graft sepsis. J Vasc Surg 1986 Jul; 4(1): 5–7

    PubMed  CAS  Google Scholar 

  215. Solovskij MV, Ulbrich K, Kopecek J. Synthesis of N-(2-hydroxypropyl)methacrylamide copolymers with antimicrobial activity. Biomaterials 1983 Jan; 4(1): 44–8

    Article  PubMed  CAS  Google Scholar 

  216. Sherertz RJ, Carruth WA, Hampton AA, et al. Efficacy of antibiotic-coated catheters in preventing subcutaneous Staphylococcus aureus infection in rabbits. J Infect Dis 1993 Jan; 167(1): 98–106

    Article  PubMed  CAS  Google Scholar 

  217. Jansen B, Peters G. Modern strategies in the prevention of polymer-associated infections. J Hosp Infect 1991 Oct; 19(2): 83–8

    Article  PubMed  CAS  Google Scholar 

  218. Jansen B, Jansen S, Peters G, et al. In-vitro efficacy of a central venous catheter (‘Hydrocath’) loaded with teicoplanin to prevent bacterial colonization. J Hosp Infect 1992 Oct; 22(2): 93–107

    Article  PubMed  CAS  Google Scholar 

  219. Romano G, Berti M, Goldstein BP, et al. Efficacy of a central venous catheter (Hydrocath) loaded with teicoplanin in preventing subcutaneous staphylococcal infection in the mouse. Zentralbl Bakteriol 1993 Aug; 279(3): 426–33

    Article  PubMed  CAS  Google Scholar 

  220. Kamal GD, Pfaller MA, Rempe LE, et al. Reduced intravascular catheter infection by antibiotic bonding: a prospective, randomized, controlled trial. JAMA 1991 May 8; 265(18): 2364–8

    Article  PubMed  CAS  Google Scholar 

  221. Kamal GD, Divishek D, Kumar GC, et al. Reduced intravascular catheter-related infection by routine use of antibiotic-bonded catheters in a surgical intensive care unit. Diagn Microbiol Infect Dis 1998 Mar; 30(3): 145–52

    Article  PubMed  CAS  Google Scholar 

  222. Raad I, Darouiche R, Hachem R, et al. Antibiotics and prevention of microbial colonization of catheters. Antimicrob Agents Chemother 1995 Nov; 39(11): 2397–400

    Article  PubMed  CAS  Google Scholar 

  223. Raad I, Darouiche R, Hachem R, et al. The broad-spectrum activity and efficacy of catheters coated with minocycline and rifampin. J Infect Dis 1996 Feb; 173(2): 418–24

    Article  PubMed  CAS  Google Scholar 

  224. Raad I, Darouiche R, Dupuis J, et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections: a randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med 1997 Aug 15; 127(4): 267–74

    CAS  Google Scholar 

  225. Darouiche RO, Raad II, Heard SO, et al. A comparison of two antimicrobial-impregnated central venous catheters: Catheter Study Group. N Engl J Med 1999 Jan 7; 340(1): 1–8

    Article  PubMed  CAS  Google Scholar 

  226. Crnich CJ, Maki DG. The promise of novel technology for the prevention of intravascular device-related bloodstream infection. I: pathogenesis and short-term devices. Clin Infect Dis 2002 May 1; 34(9): 1232–42

    Google Scholar 

  227. Tambe SM, Sampath L, Modak SM. In vitro evaluation of the risk of developing bacterial resistance to antiseptics and antibiotics used in medical devices. J Antimicrob Chemother 2001 May; 47(5): 589–98

    Article  PubMed  CAS  Google Scholar 

  228. Donelli G, Francolini I, Piozzi A, et al. New polymer-antibiotic systems to inhibit bacterial biofilm formation: a suitable approach to prevent central venous catheter-associated infections. J Chemother 2002 Oct; 14(5): 501–7

    PubMed  CAS  Google Scholar 

  229. Schierholz JM, Fleck C, Beuth J, et al. The antimicrobial efficacy of a new central venous catheter with long-term broad-spectrum activity. J Antimicrob Chemother 2000 Jul; 46(1): 45–50

    Article  PubMed  CAS  Google Scholar 

  230. Kingston D, Seal DV, Hill ID. Self-disinfecting plastics for intravenous catheters and prosthetic inserts. J Hyg (Lond) 1986 Apr; 96(2): 185–98

    Article  CAS  Google Scholar 

  231. Quesnel LB, AI Najjar AR, Buddhavudhikrai P. Synergism between chlorhexidine and sulphadiazine. J Appl Bacteriol 1978 Dec; 45(3): 397–405

    Article  PubMed  CAS  Google Scholar 

  232. Bach A, Schmidt H, Bottiger B, et al. Retention of antibacterial activity and bacterial colonization of antiseptic-bonded central venous catheters. J Antimicrob Chemother 1996 Feb; 37(2): 315–22

    Article  PubMed  CAS  Google Scholar 

  233. Hannan M, Juste RN, Umasanker S, et al. Antiseptic-bonded central venous catheters and bacterial colonisation. Anaesthesia 1999 Sep; 54(9): 868–72

    Article  PubMed  CAS  Google Scholar 

  234. Ciresi DL, Albrecht RM, Volkers PA, et al. Failure of antiseptic bonding to prevent central venous catheter-related infection and sepsis. Am Surg 1996 Aug; 62(8): 641–6

    PubMed  CAS  Google Scholar 

  235. Pemberton LB, Ross V, Cuddy P, et al. No difference in catheter sepsis between standard and antiseptic central venous catheters: a prospective randomized trial. Arch Surg 1996 Sep; 131(9): 986–9

    Article  PubMed  CAS  Google Scholar 

  236. George SJ, Vuddamalay P, Boscoe MJ. Antiseptic-impregnated central venous catheters reduce the incidence of bacterial colonization and associated infection in immunocompromised transplant patients. Eur J Anaesthesiol 1997 Jul; 14(4): 428–31

    Article  PubMed  CAS  Google Scholar 

  237. Logghe C, Van Ossel C, D’Hoore W, et al. Evaluation of chlorhexidine and silver-sulfadiazine impregnated central venous catheters for the prevention of bloodstream infection in leukaemic patients: a randomized controlled trial. J Hosp Infect 1997 Oct; 37(2): 145–56

    Article  PubMed  CAS  Google Scholar 

  238. Maki DG, Stolz SM, Wheeler S, et al. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter: a randomized, controlled trial. Ann Intern Med 1997 Aug 15; 127(4): 257–66

    PubMed  CAS  Google Scholar 

  239. Tennenberg S, Lieser M, McCurdy B, et al. A prospective randomized trial of an antibiotic- and antiseptic-coated central venous catheter in the prevention of catheter-related infections. Arch Surg 1997 Dec; 132(12): 1348–51

    Article  PubMed  CAS  Google Scholar 

  240. Collin GR. Decreasing catheter colonization through the use of an antiseptic-impregnated catheter: a continuous quality improvement project. Chest 1999 Jun; 115(6): 1632–40

    Article  PubMed  CAS  Google Scholar 

  241. Sheng WH, Ko WJ, Wang JT, et al. Evaluation of antiseptic-impregnated central venous catheters for prevention of catheter-related infection in intensive care unit patients. Diagn Microbiol Infect Dis 2000 Sep; 38(1): 1–5

    Article  PubMed  CAS  Google Scholar 

  242. Haxhe JJ, D’Hoore W. A meta-analysis dealing with the effectiveness of chlorhexidine and silver-sufhadiazine impregnated central venous catheters. J Hosp Infect 1998 Oct; 40(2): 166–8

    Article  PubMed  CAS  Google Scholar 

  243. Veenstra DL, Saint S, Saha S, et al. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA 1999 Jan 20; 281(3): 261–7

    Article  PubMed  CAS  Google Scholar 

  244. Marin MG, Lee JC, Skurnick JH. Prevention of nosocomial bloodstream infections: effectiveness of antimicrobial-impregnated and heparin-bonded central venous catheters. Crit Care Med 2000 Sep; 28(9): 3332–8

    Article  PubMed  CAS  Google Scholar 

  245. Pai MP, Pendland SL, Danziger LH. Antimicrobial-coated/ bonded and -impregnated intravascular catheters. Ann Pharmacother 2001 Oct; 35(10): 1255–63

    Article  PubMed  CAS  Google Scholar 

  246. McConnell SA, Gubbins PO, Anaissie EJ. Do antimicrobial-impregnated central venous catheters prevent catheter-related bloodstream infection? Clin Infect Dis 2003 Jul 1; 37(1): 65–72

    Article  PubMed  Google Scholar 

  247. Brun-Buisson C, Doyon F, Sollet JP, et al. Prevention of intravascular catheter-related infection with newer chlorhexidine-silver-sulfadiazine-coated catheters. Intensive Care Med 2004; 30: 837–43

    Article  PubMed  Google Scholar 

  248. Tattawasart U, Maillard JY, Furr JR, et al. Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J Hosp Infect 1999 Jul; 42(3): 219–29

    Article  PubMed  CAS  Google Scholar 

  249. Oda T, Hamasaki J, Kanda N, et al. Anaphylactic shock induced by an antiseptic-coated central venous [correction of nervous] catheter [published erratum appears in Anesthesiology 1998 Feb; 88 (2): 560]. Anesthesiology 1997 Nov; 87(5): 1242–4

    Article  PubMed  CAS  Google Scholar 

  250. Gosheger G, Hardes J, Ahrends H, et al. Silver-coated megaendoprostheses in a rabbit model: an analysis of the infection rate and toxicological side effects. Biomaterials 2004; 25(24): 5547–56

    Article  PubMed  CAS  Google Scholar 

  251. Sioshansi P. New processes for surface treatment of catheters. Artif Organs 1994 Apr; 18(4): 266–71

    Article  PubMed  CAS  Google Scholar 

  252. McLean RJ, Hussain AA, Sayer M, et al. Antibacterial activity of multilayer silver-copper surface films on catheter material. Can J Microbiol 1993 Sep; 39(9): 895–9

    Article  PubMed  CAS  Google Scholar 

  253. Davenas J, Thevenard P, Philippe F, et al. Surface implantation treatments to prevent infection complications in short term devices. Biomol Eng 2002 Aug; 19(2–6): 263–8

    Article  PubMed  CAS  Google Scholar 

  254. Gatter N, Kohnen W, Jansen B. In vitro efficacy of a hydrophilic central venous catheter loaded with silver to prevent microbial colonization. Zentralbl Bakteriol 1998 Jan; 287(1–2): 157–69

    Article  PubMed  CAS  Google Scholar 

  255. Jansen B, Rinck M, Wolbring P, et al. In vitro evaluation of the antimicrobial efficacy and biocompatibility of a silver-coated central venous catheter. J Biomater Appl 1994 Jul; 9(1): 55–70

    Article  CAS  Google Scholar 

  256. Boswald M, Lugauer S, Regenfus A, et al. Reduced rates of catheter-associated infection by use of a new silver-impregnated central venous catheter. Infection 1999; 27 Suppl. 1: S56–60

    Article  PubMed  Google Scholar 

  257. Ranucci M, Isgro G, Giomarelli PP, et al. Impact of oligon central venous catheters on catheter colonization and catheter-related bloodstream infection. Crit Care Med 2003 Jan; 31(1): 52–9

    Article  PubMed  CAS  Google Scholar 

  258. Liu WK, Tebbs SE, Byrne PO, et al. The effects of electric current on bacteria colonising intravenous catheters. J Infect 1993 Nov; 27(3): 261–9

    Article  PubMed  CAS  Google Scholar 

  259. Raad I, Hachem R, Zermeno A, et al. In vitro antimicrobial efficacy of silver iontophoretic catheter. Biomaterials 1996 Jun; 17(11): 1055–9

    Article  PubMed  CAS  Google Scholar 

  260. Goldschmidt H, Hahn U, Salwender HJ, et al. Prevention of catheter-related infections by silver coated central venous catheters in oncological patients. Zentralbl Bakteriol 1995 Dec; 283(2): 215–23

    Article  PubMed  CAS  Google Scholar 

  261. Carbon RT, Lugauer S, Geitner U, et al. Reducing catheter-associated infections with silver-impregnated catheters in long-term therapy of children. Infection 1999; 27 Suppl. 1: S69–73

    Article  PubMed  Google Scholar 

  262. Stoiser B, Kofler J, Staudinger T, et al. Contamination of central venous catheters in immunocompromised patients: a comparison between two different types of central venous catheters. J Hosp Infect 2002 Mar; 50(3): 202–6

    Article  PubMed  CAS  Google Scholar 

  263. Bridgett MJ, Davies MC, Denyer SP, et al. In vitro assessment of bacterial adhesion to Hydromer-coated cerebrospinal fluid shunts. Biomaterials 1993 Feb; 14(3): 184–8

    Article  PubMed  CAS  Google Scholar 

  264. Bayston R, Zdroyewski V, Barsham S. Use of an in vitro model for studying the eradication of catheter colonisation by Staphylococcus epidermidis. J Infect 1988 Mar; 16(2): 141–6

    Article  PubMed  CAS  Google Scholar 

  265. Bayston R, Barsham S. Catheter colonisation: a laboratory model suitable for aetiological, therapeutic and preventive studies. Med Lab Sci 1988 Jul; 45(3): 235–9

    PubMed  CAS  Google Scholar 

  266. Bayston R, Grove N, Siegel J, et al. Prevention of hydrocephalus shunt catheter colonisation in vitro by impregnation with antimicrobials. J Neurol Neurosurg Psychiatry 1989 May; 52(5): 605–9

    Article  PubMed  CAS  Google Scholar 

  267. Bayston R, Milner RD. Antimicrobial activity of silicone rubber used in hydrocephalus shunts, after impregnation with antimicrobial substances. J Clin Pathol 1981 Sep; 34(9): 1057–62

    Article  PubMed  CAS  Google Scholar 

  268. Bayston R, Lambert E. Duration of protective activity of cerebrospinal fluid shunt catheters impregnated with antimicrobial agents to prevent bacterial catheter-related infection. J Neurosurg 1997 Aug; 87(2): 247–51

    Article  PubMed  CAS  Google Scholar 

  269. Bayston R, Ashraf W, Bhundia C. Mode of action of an antimicrobial biomaterial for use in hydrocephalus shunts. J Antimicrob Chemother 2004; 53: 778–82

    Article  PubMed  CAS  Google Scholar 

  270. Schierholz J, Jansen B, Jaenicke L, et al. In-vitro efficacy of an antibiotic releasing silicone ventricle catheter to prevent shunt infection. Biomaterials 1994 Oct; 15(12): 996–1000

    Article  PubMed  CAS  Google Scholar 

  271. Hampl J, Schierholz J, Jansen B, et al. In vitro and in vivo efficacy of a rifampin-loaded silicone catheter for the prevention of CSF shunt infections. Acta Neurochir (Wien) 1995; 133(3–4): 147–52

    Article  CAS  Google Scholar 

  272. Kohnen W, Schaper J, Klein O, et al. A silicone ventricular catheter coated with a combination of rifampin and trimethoprim for the prevention of catheter-related infections. Zentralbl Bakteriol 1998 Jan; 287(1–2): 147–56

    Article  PubMed  CAS  Google Scholar 

  273. Hampl JA, Weitzel A, Bonk C, et al. Rifampin-impregnated silicone catheters: a potential tool for prevention and treatment of CSF shunt infections. Infection 2003 Mar; 31(2): 109–11

    Article  PubMed  CAS  Google Scholar 

  274. Schierholz JM, Pulverer G. Investigation of a rifampin, fusidicacid and mupirocin releasing silicone catheter. Biomaterials 1998 Nov; 19(22): 2065–74

    Article  PubMed  CAS  Google Scholar 

  275. Zabramski JM, Whiting D, Darouiche RO, et al. Efficacy of antimicrobial-impregnated external ventricular drain catheters: a prospective, randomized, controlled trial. J Neurosurg 2003 Apr; 98(4): 725–30

    Article  PubMed  Google Scholar 

  276. von Eiff C, Overbeck J, Haupt G, et al. Bactericidal effect of extracorporeal shock waves on Staphylococcus aureus. J Med Microbiol 2000 Aug; 49(8): 709–12

    Google Scholar 

  277. Kohnen W, Bletz C, Hampl J, et al. Intelligent polymers for the prevention of device-related infection [poster no. S5]. 9th Annual Meeting of the Society of Healthcare Epidemiology of America; 1999 Apr 18–20; San Francisco

Download references

Acknowledgements

This work was supported by grants from BMBF (Pathogenomic Network) and from the Interdisciplinary Clinical Research Center (project Hei2/042/04). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof von Eiff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Eiff, C., Jansen, B., Kohnen, W. et al. Infections Associated with Medical Devices. Drugs 65, 179–214 (2005). https://doi.org/10.2165/00003495-200565020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565020-00003

Keywords

Navigation