Skip to main content

Advertisement

Log in

Saliva Composition and Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Little attention has been directed toward identifying the changes which occur in salivary composition in response to exercise. To address this, our article first refers to the main aspects of salivary gland physiology. A knowledge of the neural control of salivary secretion is especially important for the understanding of the effects of exertion on salivary secretion. Both salivary output and composition depend on the activity of the autonomic nervous system and any modification of this activity can be observed indirectly by alterations in the salivary excretion.

The effects of physical activity (with reference to factors such as exercise intensity and duration, or type of exercise protocol) on salivary composition are then considered. Exercise might indeed induce changes in several salivary components such as immunoglobulins, hormones, lactate, proteins and electrolytes. Saliva composition might therefore be used as an alternative noninvasive indicator of the response of the different body tissues and systems to physical exertion.

In this respect, the response of salivary amylase and salivary electrolytes to incremental levels of exercise is of particular interest. Beyond a certain intensity of exercise, and coinciding with the accumulation of blood lactate (anaerobic threshold or AT), a ’saliva threshold’ (Tsa) does indeed exist. Tsa is the point during exercise at which the levels of salivary α-amylase and electrolytes (especially Na+) also begin to rise above baseline levels. The occurrence of the 2 thresholds (AT and Tsa) might, in turn, be attributable to the same underlying mechanism, that of increased adrenal sympathetic activity at high exercise intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schneyer LH, Young JA, Schneyer CA. Salivary secretion of electrolytes. Physiol Rev 1972; 52: 720–77

    PubMed  CAS  Google Scholar 

  2. Guyton AC. Secretory functions of the alimentary tract. In. Guyton AC, editor. Textbook of medical physiology. 9th ed. Philadelphia; WB Saunders Company, 1996: 709–25

    Google Scholar 

  3. Dawes C. Rhythms in salivary flow rate and composition. Int J Chronobiol 1974; 2: 253–79

    PubMed  CAS  Google Scholar 

  4. Young JA, Van Lennep EW. Secretion of salivary and saltglands. In. Giebisch G, Tosteson DC, Ussing HH, editors. Membrane transport in biology. Berlin; Springer-Verlag, 1979: 563–74

    Google Scholar 

  5. Garret JR. Structure and innervation of salivary glands. In. Cohen B, Kramer JRH, editors. Scientific foundations of dentistry. London; Heinemann, 1976: 499–516

    Google Scholar 

  6. Williams PL, Wawick R. Alimentary system. In. Williams PL, Wawick R, editors. Gray’s anatomy. 36th ed. Edinburgh: Churchill Livingstone, 1980: 1267–81

    Google Scholar 

  7. Davenport HW. Salivary secretion. In. Davenport HW, editor. Physiology of the digestive tract. 5th ed. Chicago: Year Book Medical Publishers, 1992: 103–12

    Google Scholar 

  8. Suddick RP, Dowd FJ. Mechanisms of salivary secretion. In. Menaker L. The biologic basis of dental caries: an oral biology textbook of Lewis Menaker. Hagerstown (MD): Harper & Row Publishers, 1986: 67–118

    Google Scholar 

  9. Bartual J. Fisiología y fisiopatología parotídea. In. Clemente M, editor. Patología de la parótida. Valencia: Fundación García Muñoz, 1980: 27–40

    Google Scholar 

  10. Schneyer CA. Salivary gland changes after isoproterenolinduced enlargement. Am J Physiol 1962; 203: 232–6

    PubMed  CAS  Google Scholar 

  11. Schneyer LH. Amylase content of separate salivary secretions of man. J Appl Physiol 1956; 9: 453–5

    PubMed  CAS  Google Scholar 

  12. Schneyer LH, Schneyer CA. Apparent synthesis of submaxillary gland amylase during pilocarpine administration. Am J Physiol 1956; 187: 403–6

    PubMed  CAS  Google Scholar 

  13. Olmez I, Gulovali MC, Gordon GE, et al. Trace elements in human parotid saliva. Biol Trace Elem Res 1988; 17: 259–70

    Article  PubMed  CAS  Google Scholar 

  14. Baum BJ. Neurotransmitter control of secretion. J Dent Res 1987; 66 special issue: 628–32

    Google Scholar 

  15. Anderson LC, Garret JR, Johnson DA, et al. Influence of circulating catecholamines on protein secretion into rat parotid saliva during parasympathetic stimulation. J Physiol 1984; 352: 163–71

    PubMed  CAS  Google Scholar 

  16. Denniss AR, Schneyer LH, Sucanthapree C, et al. Actions of adrenergic agonist on isolated excretory ducts of submandibular glands. Am J Physiol 1978; 235: F548–56

    PubMed  CAS  Google Scholar 

  17. Asking B, Emmeling N. Amylase in parotid saliva of rats after sympathetic nervous decentralization. Arch Oral Biol 1985; 4: 337–9

    Article  Google Scholar 

  18. Pilardeau P, Richalet JP, Bouissou P, et al. Saliva flow and composition in humans exposed to acute altitude hypoxia. Eur J Appl Physiol 1990; 59: 450–3

    Article  CAS  Google Scholar 

  19. Speirs RL, Herring J, Cooper WD, et al. The influence of sympathetic activity and isoprenaline on the secretion of amylase from the human parotid gland. Arch Oral Biol 1974; 19: 747–52

    Article  PubMed  CAS  Google Scholar 

  20. Garret JR, Emmelin N. Activities of myoepithelial cells: a review. Med Biol 1979; 57: 1–28

    Google Scholar 

  21. Thaysen JH, Thorn NH, Schwartz IL. Excretion of sodium, potassium, chloride and carbon dioxide in human parotid saliva. Am J Physiol 1954; 178: 155–9

    PubMed  CAS  Google Scholar 

  22. Gutman D, Ben-Aryeh H. The influence of age on salivary contents and rate of flow. Int J Oral Surg 1974; 3: 314–7

    Article  PubMed  CAS  Google Scholar 

  23. Ben-Aryed H, Miron D, Szargel R, et al. Whole-saliva secretion rates in old and young healthy subjects. J Dent Res 1984; 63: 1147–8

    Article  Google Scholar 

  24. Yaegaki K, Ogura R, Kameyama T, et al. Biochemical diagnosis of reduced salivary gland function. Int J Oral Surg 1985; 14: 37–49

    Google Scholar 

  25. Navazesh M, Mulligan RA, Kipnis V, et al. Comparison of whole saliva flow rates and mucin concentrations in healthy caucasian young and aged adults. J Dent Res 1992; 71: 1275–8

    Article  PubMed  CAS  Google Scholar 

  26. Baum BJ. Evaluation of stimulated parotid saliva flow rate in different age groups. J Dent Res 1981; 60: 1292–6

    Article  PubMed  CAS  Google Scholar 

  27. Chauncey HH, Brokan GA, Wayler AH, et al. Parotid fluid composition in healthy aging males. Adv Physiol Sci 1981; 28: 323–8

    CAS  Google Scholar 

  28. Heft MH, Baum BJ. Unstimulated and stimulated parotid salivary flow rate in individuals of different ages. J Dent Res 1984; 63: 1182–5

    Article  PubMed  CAS  Google Scholar 

  29. Wu AJ, Atkinson JC, Fox PC, et al. Cross-sectional and longitudinal analysis of stimulated parotid salivary constituents in healthy, different-age subjects. J Gerontol 1993; 48: M219–24

    PubMed  CAS  Google Scholar 

  30. Palmai G, Blackwell B. The diurnal pattern of salivary flow in normal and depressed patients. Br J Psychiatry 1965; 111: 334–8

    Article  PubMed  CAS  Google Scholar 

  31. Palmai G, Blackwell B, Maxwell AE, et al. Patterns of salivary flow in depressive illness and during treatment. Br J Psychiatry 1967: 1297–1308

    Google Scholar 

  32. Pawan GLS. Studies on the salivary sodium-potassium ratio in man. Biochem J 1955; 60: XII

    PubMed  CAS  Google Scholar 

  33. Prader A, Gautier E, Gautier R, et al. The Na and K concentration in mixed saliva: influence of secretion rate, stimulation, method of collection, age, sex, time of day and adrenocortical activity. In: Colloquia on Endocrinology. Ciba Symposium, 1955; 8: 382–95

    Google Scholar 

  34. Dawes C. Circadian rhythms in human salivary flow rate and composition. J Physiol 1972; 220: 529–45

    PubMed  CAS  Google Scholar 

  35. Dawes C, Ong BY. Circadian rhythms in the flow rate and proportional contribution of parotid to whole saliva volume in man. Arch Oral Biol 1973; 18: 1145–53

    Article  PubMed  CAS  Google Scholar 

  36. Dawes C, Ong BY. Circadian rhythms in the concentrations of protein and the main electrolytes in human unstimulated parotid saliva. Arch Oral Biol 1973; 18: 1233–42

    Article  PubMed  CAS  Google Scholar 

  37. Shannon IL. Climatological effects on human parotid gland function. Arch Oral Biol 1966; 11: 451–3

    Article  PubMed  CAS  Google Scholar 

  38. Nauntofle B. Regulation of electrolyte and fluid secretion in salivary acinar cells. Am J Physiol 1992; 263: G823–37

    Google Scholar 

  39. Martinez JR. Ion transport and water movement. J Dent Res 1987; 66 special issue: 638–47

    PubMed  CAS  Google Scholar 

  40. Housh TJ, Johnson GO, Housh DJ, et al. The effect of exercise at various temperatures on salivary levels of immunoglobulin A. Int J Sports Med 1991; 12: 498–500

    Article  PubMed  CAS  Google Scholar 

  41. Mackinnon TL, Ginn E, Seymour G. Temporal relationship between exercise-induced decreases in salivary IgA concentrations and subsequent appearance of upper respiratory illness in elite athletes [abstract]. Med Sci Sports Exerc 1991; 266: 545

    Google Scholar 

  42. Mackinnon TL, Tomasi TB. Immunology of exercise. In. Appengeller O, editor. Urban and sports medicine. 3rd ed. Baltimore; Schwarzenberg, 1989: 273–89

    Google Scholar 

  43. Mackinnon TL, Chick TW, van As A, et al. The effects of exercise on secretory and natural immunity. Adv Exp Med Biol 1987; 216A: 869–76

    PubMed  CAS  Google Scholar 

  44. Tharp GD, Barnes M. Reduction of saliva immunoglobulin levels by swim training. Eur J Appl Physiol 1990; 60: 61–4

    Article  CAS  Google Scholar 

  45. Tomasi TB, Trudeau FB, Czerwinski D, et al. Immune parameters in atletes before and after strenuous exercise. J Clin Immunol 1982; 2: 173–8

    Article  PubMed  CAS  Google Scholar 

  46. Mackinnon LT, Hooper S. Mucosal (secretory) immune system responses to exercise of varying intensity and during overtraining. Int J Sports Med 1994; 15: S179–83

    Article  PubMed  Google Scholar 

  47. Mackinnon LT, Chick TW, van As A, et al. Decreased secretory immunoglobulins following intense endurance exercise. Sports Train Med Rehab 1989; 1: 209–18

    Google Scholar 

  48. Muns G, Liesen H, Riedel K, et al. Influence of long-distance running on IgA in nasal secretion and saliva. Dtsch Z Sportmed 1989; 40: 63–5

    Google Scholar 

  49. Tomasi TB, Trudeau FB, Czrewinski D, et al. Immune parameters in athletes before and after stenuous exercise. J Clin Immunol 1982; 2: 173–8

    Article  PubMed  CAS  Google Scholar 

  50. McDowell SL, Hughes RA, Hughes RJ, et al. The effect of exhaustive exercise on salivary immunoglobulin A. J Sports Med Phys Fitness 1992; 32: 412–15

    PubMed  CAS  Google Scholar 

  51. Mackinnon LT, Ginn E, Seymour GJ. Decreased salivary immunoglobulin A secretion rate after intense interval exercise in elite kayakers. Eur J Appl Physiol 1993; 67: 180–4

    Article  CAS  Google Scholar 

  52. Gleeson M, McDonald WA, Cripps AW, et al. The effect on immunity of long-term intensive training in elite swimmers. Clin Exp Immunol 1995; 102: 210–6

    Article  PubMed  CAS  Google Scholar 

  53. Mackinnon LT, Jenkins DG. Decreased salivary immunoglobulins after intense interval exercise before and after training. Med Sci Sports Exerc 1993; 25: 678–83

    PubMed  CAS  Google Scholar 

  54. Schouten WJ, Verschuur R, Kemper HCG. Habitual exercise, and salivary immunoglobulin A levels in young adults: the Amsterdam growth and healthy study. Int J Sports Med 1988; 9: 289–93

    Article  PubMed  CAS  Google Scholar 

  55. Tharp GD. Basketball exercise and secretory immunoglobulin A. Eur J Appl Physiol 1991; 63: 312–4

    Article  CAS  Google Scholar 

  56. McDowell SL, Hughes RA, Hughes TJ, et al. The effect of exercise training on salivary immunoglobulin A and cortisol responses to maximal exercise. Int J Sports Med 1992; 13: 577–80

    Article  PubMed  CAS  Google Scholar 

  57. Douglas DJ, Hanson PG. Upper respiratory infections in the conditioned athlete [abstract]. Med Sci Sports Exerc 1978; 10: 55

    Google Scholar 

  58. Nieman DC, Johansen LM, Lee JW. Infectious episodes in runners before and after the Los Angeles Marathon [abstract]. Med Sci Sports Exerc 1988; 20: 542

    Google Scholar 

  59. Peters EM, Bateman ED. Ultramarathon running and upper respiratory tract infections. S Afr Med J 1983; 64: 582–4

    PubMed  CAS  Google Scholar 

  60. American College of Sports Medicine. Position stand on the recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med Sci Sports 1990; 22: 265-74

    Google Scholar 

  61. McDowell SL, Chalos K, House TJ, et al. The effect of exercise intensity and duration on salivary immunoglobulin A. Eur J Appl Physiol 1991; 63: 108–11

    Article  CAS  Google Scholar 

  62. Dawes C. The effects of exercise on protein and electrolyte secretion in parotid saliva. J Physiol 1981; 320: 139–48

    PubMed  CAS  Google Scholar 

  63. Bardon A, Cedor O, Kollberg H. Cystic fibrosis-like changes in saliva of healthy persons subjected to anaerobic exercise. Clin Chim Acta 1983; 133: 311–6

    Article  PubMed  CAS  Google Scholar 

  64. Lavelle CLB. Applied oral physiology. London: Wright Publishing, 1988: 133–282

    Google Scholar 

  65. Pilardeau P, Richalet JP, Garnier M, et al. Sécrétion salivaire et exercise physique. Med Sport 1992; 66: 111–4

    Google Scholar 

  66. Gilman S, Thornton R, Miller D, et al. Effects of exercise stress on parotid gland secretion. Horm Metab Res 1979; 11: 454

    Article  PubMed  CAS  Google Scholar 

  67. Hartley LH, Mason JW, Hogan RP, et al. Multiple hormonal response to graded exercise in relation to physical conditioning. J Appl Physiol 1972; 33: 602–6

    PubMed  CAS  Google Scholar 

  68. Calvo F, Chicharro JL, Bandrés F, et al. Anaerobic threshold determination with analysis of salivary amylase. Can J Appl Physiol 1997; 22: 553–561

    Article  PubMed  CAS  Google Scholar 

  69. Stupnicki R, Obminski Z. Glucocorticoid response to exercise as measured by serum and salivary cortisol. Eur J Appl Physiol 1992; 65: 546–9

    Article  CAS  Google Scholar 

  70. Katz FH, Shannon IL. Identification and significance of parotid fluid corticosteroids. Acta Endocrinol 1964; 46: 393–404

    PubMed  CAS  Google Scholar 

  71. Vining RF, McGinley RA, Maksujtis JJ, et al. Salivary cortisol: a better measure of adrenal cortical function than serum cortisol. Ann Clin Biochem 1983; 20: 329

    PubMed  CAS  Google Scholar 

  72. Umeda T, Hiramatsu R, Iwoaka T, et al. Use of saliva for monitoring unbound free cortisol levels in serum. Clin Chim Acta 1981; 110: 245

    Article  PubMed  CAS  Google Scholar 

  73. Walker RF. Salivary cortisol determinations in the assessment of adrenal activity. Front Oral Physiol 1984; 5: 33

    CAS  Google Scholar 

  74. López Calvet JA, Navarro MA, Barbany JR, et al. Salivary steroid changes and physical performance in highly trained cyclists. Int J Sports Med 1993; 14: 111–7

    Article  Google Scholar 

  75. Port K. Serum and saliva cortisol responses and blood lactate accumulation during incremental exercise testing. Int J Sports Med 1991; 12: 490–4

    Article  PubMed  CAS  Google Scholar 

  76. Passelergue P, Robert A, Lac G. Salivary cortisol and testosterone variations during an official and a simulated weightlifting competition. Int J Sports Med 1995; 16: 298–303

    Article  PubMed  CAS  Google Scholar 

  77. Vining RF, McGinley RA, Symons RG. Hormones in saliva: mode on entry and consequent implications for clinical interpretation. Clin Chem 1983; 29: 1752–6

    PubMed  CAS  Google Scholar 

  78. Obminski Z, Stupnicki R. Relations between cortisol in saliva, total and free cortisol and transcortin in serum. In. Görög S, editor. Advances in steroid analysis. Budapest: Akademiai Kiado, 1990: 453–8

    Google Scholar 

  79. Cook NJ, Ng A, Read GF, et al. Salivary cortisol for monitoring adrenal activity during marathon runs. Horm Res 1987; 25: 18–23

    Article  PubMed  CAS  Google Scholar 

  80. O’Connor PJ, Corrigan DL. Influence of short-term cycling on salivary cortisol levels. Med Sci Sports 1987; 19: 224–8

    Google Scholar 

  81. del Corral P, Mahon AD, Duncan GE, et al. The effect of exercise on serum and salivary cortisol in male children. Med Sci Sports Exerc 1994; 26: 1297–301

    PubMed  Google Scholar 

  82. Aubets J, Segura J. Salivary cortisol as a marker of competition related stress. Sci Sports 1995; 10: 149–54

    Article  Google Scholar 

  83. López Rodriguez C, Marin B, Sanz P. Comparative hormonal, anthropometric and bodily build study of ‘leonese’ wrestlers. Med Sport 1995; 48: 5–14

    Google Scholar 

  84. Vanhelder WP, Radomski MW, Goode RC, et al. Hormonal and metabolic response to three types of exercise of equal duration and external work output. Eur J Appl Physiol 1985; 54: 337–42

    Article  CAS  Google Scholar 

  85. Kindermann W, Schnabel A, Schmitt WM, et al. Catecholamines, growth hormone, cortisol, insulin, and sex hormones in anaerobic and aerobic exercise. Eur J Appl Physiol 1982; 49: 389–99

    Article  CAS  Google Scholar 

  86. Farrell PA, Gartwaite TL, Gustafson AB. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. J Appl Physiol 1983; 55: 1441–4

    PubMed  CAS  Google Scholar 

  87. Few JD, Cashmore GC, Turton G. Adrenocortical response to one-leg and two-leg exercise on bicycle ergometer. Eur J Appl Physiol 1980; 11: 167–74

    Article  Google Scholar 

  88. Hartley LH, Mason JW, Hogan RP, et al. Multiple hormonal response to graded exercise in relation to physical training. J Appl Physiol 1972; 35: 602–5

    Google Scholar 

  89. Fellmann N, Bedu M, Giry J, et al. Hormonal, fluid and electrolyte changes during a 72 h recovery from 24 h endurance run. Int J Sports Med 1989; 10: 406–12

    Article  PubMed  CAS  Google Scholar 

  90. Filaire E, Duché, Lac G, et al. Saliva cortisol, physical exercise and training: influences of swimming and handball on cortisol concentrations in women. Eur J Appl Physiol 1996; 74: 274–8

    Article  CAS  Google Scholar 

  91. Kirwan JP, Costill D, Flynn M. Physiological responses to successive days of intensive training in competitive swimmers. Med Sci Sports Exerc 1988; 20: 255–9

    Article  PubMed  CAS  Google Scholar 

  92. Seidman DS, Dolev E, Denster PA, et al. Androgenic response to long-term physical training in male subjects. Int J Sports Med 1990; 11: 421–4

    Article  PubMed  CAS  Google Scholar 

  93. Alen M, Pakarinen A, Häkkinen K, et al. Responses of serum androgenic-anabolic and catabolic hormones to prolonged strength training. Int J Sports Med 1988; 9: 229–33

    Article  PubMed  CAS  Google Scholar 

  94. Tabata I, Atomi Y, Mutoh Y, et al. Effect of physical training on responses of serum adrenocorticotropic hormone during prolonged exhausting exercise. Eur J Appl Physiol 1990; 61: 188–92

    Article  CAS  Google Scholar 

  95. Ohkuwa T, Itoh H, Yamazaki Y, et al. Salivary and blood lactate after supramaximal exercise in sprinters and long-distance runners. Scand J Med Sci Sports 1995; 5: 285–90

    Article  PubMed  CAS  Google Scholar 

  96. Segura R, Javierre C, Ventura JLL, et al. A new approach to the assessment of anaerobic metabolism: measurement of lactate in saliva. Br J Sports Med 1996; 30: 305–9

    Article  PubMed  CAS  Google Scholar 

  97. Salminen S, Konttinen A. Effect of exercise on Na and K concentrations in human saliva and serum. J Appl Physiol 1963; 18: 812–4

    PubMed  CAS  Google Scholar 

  98. Shannon IL. Effect of exercise on parotid fluid corticosteroids and electrolytes. J Dent Res 1967; 46: 608–10

    Article  PubMed  CAS  Google Scholar 

  99. Ben-Aryeh H, Roll N, Lahav M, et al. Effect of exercise on salivary composition and cortisol in serum and saliva in man. J Dent Res 1989; 68: 1495–7

    Article  PubMed  CAS  Google Scholar 

  100. Chicharro JL, Legido JC, Alvarez J, et al. Saliva electrolytes as a useful tool for anaerobic threshold determination. Eur J Appl Physiol 1994; 68: 214–8

    Article  CAS  Google Scholar 

  101. Chicharro JL, Calvo F, Alvarez J, et al. Anaerobic threshold in children: determination from saliva analysis in field tests. Eur J Appl Physiol 1995; 70: 541–4

    Article  CAS  Google Scholar 

  102. Lehman M, Schmid P, Keul J. Plasma catecholamines and blood lactate accumulation during incremental exhaustive exercise. Int J Sports Med 1985; 6: 78–81

    Article  Google Scholar 

  103. Mazzeo RS, Marshall PM. Influence of plasma catecholamines on the lactate threshold during graded exercise. J Appl Physiol 1989; 67: 1319–22

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chicharro, J.L., Lucía, A., Pérez, M. et al. Saliva Composition and Exercise. Sports Med 26, 17–27 (1998). https://doi.org/10.2165/00007256-199826010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199826010-00002

Keywords

Navigation