Skip to main content
Log in

Scapular Positioning in Athlete’s Shoulder

Particularities, Clinical Measurements and Implications

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Despite the essential role played by the scapula in shoulder function, current concepts in shoulder training and treatment regularly neglect its contribution. The ‘scapular dyskinesis’ is an alteration of the normal scapular kinematics as part of scapulohumeral rhythm, which has been shown to be a nonspecific response to a host of proximal and distal shoulder injuries. The dyskinesis can react in many ways with shoulder motion and function to increase the dysfunction. Thoracic kyphosis, acromio-clavicular joint disorders, subacromial or internal impingement, instability or labral pathology can alter scapular kinematics. Indeed, alteration of scapular stabilizing muscle activation, inflexibility of the muscles and capsule-ligamentous complex around the shoulder may affect the resting position and motion of the scapula. Given the interest in the scapular positioning and patterns of motion, this article aims to give a detailed overview of the literature focusing on the role of the scapula within the shoulder complex through the sports context. Such an examination of the role of the scapula requires the description of the normal pattern of scapula motion during shoulder movement; this also implies the study of possible scapular adaptations with sports practice and scapular dyskinesis concomitant to fatigue, impingement and instability. Different methods of scapular positioning evaluation are gathered from the literature in order to offer to the therapist the possibility of detecting scapular asymmetries through clinical examinations. Furthermore, current concepts of rehabilitation dealing with relieving symptoms associated with inflexibility, weakness or activation imbalance of the muscles are described. Repeating clinical assessments throughout the rehabilitation process highlights improvements and allows the therapist to actualize rationally his or her intervention. The return to the field must be accompanied by a transitory phase, which is conducive to integrating new instructions during sports gestures. On the basis of the possible scapular disturbance entailed in sports practice, a preventive approach that could be incorporated into training management is encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. 1 The use of trade names is for product identification purposes only and does not imply endorsement

References

  1. Weiser WM, Lee TQ, Mc Master WC, et al. Effects of simulated scapular protraction on anterior glenohumeral stability. Am J Sports Med 1999; 27: 801–5

    PubMed  CAS  Google Scholar 

  2. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of pathology. Part III: the SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation. Arthroscopy 2003; 19: 641–61

    Article  PubMed  Google Scholar 

  3. Burkhart SS, Morgan CD, Kibler WB. Shoulder injuries in overhead athletes: the ‘dead arm’ revisited. Clin Sports Med 2000; 19: 125–58

    Article  PubMed  CAS  Google Scholar 

  4. Myers JB, Laudner KG, Pasquale MR, et al. Scapular position and orientation in throwing athletes. Am J Sports Med 2005; 33: 263–71

    Article  PubMed  Google Scholar 

  5. Rubin BD, Kibler WB. Fundamental principles of shoulder rehabilitation: conservative to postoperative management. Arthroscopy 2002; 18: 29–39

    Article  PubMed  Google Scholar 

  6. Fleisig GS, Barrentine SW, Escamilla RF, et al. Biomechanics of overhand throwing with implications for injuries. Sports Med 1996; 21: 421–37

    Article  PubMed  CAS  Google Scholar 

  7. Forthomme B, Croisier JL, Ciccarone G, et al. Factors correlated with volleyball spike velocity. Am J Sports Med 2005; 33: 1513–9

    Article  PubMed  Google Scholar 

  8. Kibler WB. The role of the scapula in athletic shoulder function. Am J Sports Med 1998; 26: 325–37

    PubMed  CAS  Google Scholar 

  9. Kibler WB, Uhl TL, Maddux JWQ, et al. Qualitative clinical evaluation of scapular dysfunction: a reliability study. J Shoulder Elbow Surg 2002; 11: 550–6

    Article  PubMed  Google Scholar 

  10. Kibler WB, Mc Mullen J. Scapular dyskinesis and its relation to shoulder pain. J Am Acad Orthop Surg 2003; 11: 142–51

    PubMed  Google Scholar 

  11. Poppen NK, Walker PS. Normal and abnormal motion of the shoulder. J Bone Joint Surg 1976; 58: 195–201

    PubMed  CAS  Google Scholar 

  12. Ellen MI, Gilhool JJ, Rogers DP. Scapular instability: the scapulothoracic joint. Phys Med Rehab Clin North Am 2000; 11: 755–70

    CAS  Google Scholar 

  13. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther 2000; 80: 276–91

    PubMed  CAS  Google Scholar 

  14. Codman EA. The shoulder. Boston (MA): G. Miller and Company, 1934

    Google Scholar 

  15. Mc Quade KJ, Smidt G. Dynamic scapulohumeral rhythm: the effects of external resistance during elevation of the arm in the scapular plane. J Orthop Sports Phys Ther 1998; 27: 125–33

    Google Scholar 

  16. Kibler WB, Sciascia A, Dome D. Evaluation of apparent and absolute supraspinatus strength in patients with shoulder injury using the scapular retraction test. Am J Sports Med 2006; 34: 1643–7

    Article  PubMed  Google Scholar 

  17. Warner JJP, Micheli LJ, Arslanian LE, et al. Scapulothoracic motion in normal shoulders and shoulders with glenohumeral instability: a study using Moiré topographic analysis. Clin Orthop Rel Res 1992; 285: 191–9

    Google Scholar 

  18. Su KPE, Johnson MP, Gracely EJ, et al. Scapular rotation in swimmers with and without impingement syndrome: practice effects. Med Sci Sports Exerc 2004; 36: 1117–23

    Article  PubMed  Google Scholar 

  19. Schmitt L, Snyder-Mackler L. Role of scapular stabilizers in etiology and treatment of impingement syndrome. J Orthop Sports Phys Ther 1999; 29: 31–8

    PubMed  CAS  Google Scholar 

  20. Mc Clure PW, Michener LA, Karduna AR. Shoulder function and 3−dimensional scapular kinematics in people with and without shoulder impingement syndrome. Phys Ther 2006; 86: 1075–90

    Google Scholar 

  21. Von Eisenhart-Rothe R, Jäger A, Englmeier K-H, et al. Relevance of arm position and muscle activity on three—dimensional glenohumeral translation in patients with traumatic and atraumatic shoulder instability. Am J Sports Med 2002; 30: 514–22

    Google Scholar 

  22. Von Eisenhart-Rothe R, Matsen FA, Eckstein F, et al. Pathomechanics in atraumatic shoulder instability. Clin Orthop Relat Res 2005; 433: 82–9

    Article  Google Scholar 

  23. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of pathology. Part I: pathoanatomy and biomechanics. Arthroscopy 2003; 19: 404–20

    Article  PubMed  Google Scholar 

  24. Laudner KG, Myers JB, Pasquale MR, et al. Scapular dysfunction in throwers with pathologic internal impingement. J Orthop Sports Phys Ther 2006; 36: 485–94

    PubMed  Google Scholar 

  25. Cools AM, Witvrouw EE, Declercq GA, et al. Evaluation of isokinetic force production and associated muscle activity in the scapular rotators during a protraction—retraction movement in overhead athletes with impingement symptoms. Br J Sports Med 2004; 38: 64–8

    Article  PubMed  CAS  Google Scholar 

  26. Borich MR, Bright JM, Lorello DJ, et al. Scapular angular positioning at end range internal rotation in cases of glenohumeral internal rotation deficit. J Orthop Sports Phys Ther 2006; 36: 926–34

    Article  PubMed  Google Scholar 

  27. Borstad JD, Ludewig PM. The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J Orthop Sports Phys Ther 2005; 35: 227–38

    PubMed  Google Scholar 

  28. Hebert LJ, Moffet H, Mc Fadyen BJ, et al. A method of measuring three—dimensional scapular attitudes using the Optotrak probing system. Clin Biomech 2000; 15: 1–8

    Article  CAS  Google Scholar 

  29. Karduna AR, Mc Clure PW, Michener LA, et al. Dynamic measurements of three—dimensional scapular kinematics: a validation study. J Biomech Eng 2001; 123: 184–90

    Article  PubMed  CAS  Google Scholar 

  30. Endo K, Ikata T, Katoh S, et al. Radiographic assessment of scapular rotational tilt in chronic shoulder impingement syndrome. J Orthop Sci 2001; 6: 3–10

    Article  PubMed  CAS  Google Scholar 

  31. Berthonnaud E, Herzberg G, Zhao KD, et al. Three—dimensional in vivo displacements of the shoulder complex from biplanar radiography. Surg Radiol Anat 2005; 27: 214–22

    Article  PubMed  CAS  Google Scholar 

  32. Itoi E, Motzkin NE, Morrey BF, et al. Scapular inclination and inferior stability of the shoulder. J Shoulder Elbow Surg 1992; 1: 131–9

    Article  PubMed  CAS  Google Scholar 

  33. Dayanidhi S, Orlin M, Kozin S, et al. Scapular kinematics during humeral elevation in adults and children. Clin Biomech 2005; 20: 600–6

    Article  Google Scholar 

  34. Karduna AR, Mc Clure PW, Michener LA. Scapular kinematics: effects of altering the Euler angle sequence of rotations. J Biomech 2000; 33: 1063–8

    Article  PubMed  CAS  Google Scholar 

  35. Mc Clure PW, Michener LA, Sennett BJ, et al. Direct 3−dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elbow Surg 2001; 10: 269–77

    Article  Google Scholar 

  36. Wu G, vand der Helm FCT, Veeger HEJ, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion, part II: shoulder, elbow, wrist and hand. J Biomech 2005; 38: 981–92

    Article  PubMed  CAS  Google Scholar 

  37. Borstad JD. Resting position variables at the shoulder: evidence to support a posture—impairment association. Phys Ther 2006; 86: 549–57

    Article  PubMed  Google Scholar 

  38. Borstad JD, Ludewig PM. Comparison of scapular kinematics between elevation and lowering of the arm in the scapular plane. Clin Biomech 2002; 17: 650–9

    Article  Google Scholar 

  39. Lukasiewicz AC, Mc Clure P, Michener L, et al. Comaprison of 3−dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther 1990; 29: 574–86

    Google Scholar 

  40. Ludewig PM, Cook TM, Nawoczenski DA. Three—dimensional scapular orientation and muscle activity at selected positions of humeral elevation. J Orthop Sports Phys Ther 1996; 24: 57–65

    PubMed  CAS  Google Scholar 

  41. Meskers CGM, Vermeulen HM, de Groot JH, et al. 3D shoulder position measurements using a six—degree of freedom electromagnetic tracking device. Clin Biomech 1998; 13: 280–92

    Article  Google Scholar 

  42. Price CIM, Franklin P, Rodgers H, et al. Active and passive scapulohumeral movement in healthy persons: a comparison. Arch Phys Med Rehabil 2000; 81: 28–31

    PubMed  CAS  Google Scholar 

  43. Ebaugh DD, Mc Clure PW, Karduna AR. Three—dimensional scapulothoracic motion during active and passive arm elevation. Clin Biomech 2005; 20: 700–9

    Article  Google Scholar 

  44. Borsa PA, Timmons MK, Sauers EL. Scapular—positioning patterns during humeral elevation in unimpaired shoulders. J Athlet Train 2003; 38: 12–7

    Google Scholar 

  45. Johnson MP, Mc Clure PW, Karduna AR. New method to assess scapular upward rotation in subjects with shoulder pathology. J Orthop Sports Phys Ther 2001; 31: 81–9

    PubMed  CAS  Google Scholar 

  46. Watson L, Balster SM, Finch C, et al. Measurement of scapula upward rotation: a reliable clinical procedure. Br J Sports Med 2005; 39 (9): 599–603

    Article  PubMed  CAS  Google Scholar 

  47. Nijs J, Roussel N, Vermeulen K, et al. Scapular positioning in patients with shoulder pain: a study examining the reliability and clinical importance of 3 clinical tests. Arch Phys Med Rehabil 2005; 86: 1349–55

    Article  PubMed  Google Scholar 

  48. Diveta J, Walker ML, Skibinski B. Relationship between performance of selected scapular muscles and scapular abduction in standing subjects. Phys Ther 1990; 70: 470–7

    PubMed  CAS  Google Scholar 

  49. Odom CJ, Taylor AB, Hurd CE, et al. Measurement of scapular asymmetry and assessment of shoulder dysfunction using the lateral scapular slide test: a reliability and validity study. Phys Ther 2001; 81: 799–809

    PubMed  CAS  Google Scholar 

  50. Gibson MH, Goebel GV, Jordan TM, et al. A reliability study of measurement techniques to determine static scapular position. J Orthop Sports Phys Ther 1995; 21: 100–6

    PubMed  CAS  Google Scholar 

  51. Kibler WB, Uhl TL, Maddux JW, et al. Qualitative clinical evaluation of scapular dysfunction: a reliability study. J Shoulder Elbow Surg 2002; 11: 550–6

    Article  PubMed  Google Scholar 

  52. Koslow PA, Prosser LA, Strony GA, et al. Specificity of the lateral scapular slide test in asymptomatic competitive athletes. J Orthop Sports Phys Ther 2003; 33: 331–6

    PubMed  Google Scholar 

  53. Forthomme B, Crielaard JM, Croisier JL. Rééducation de l’épaule du sportif: proposition d’une fiche d’évaluation fonctionnelle. J Traumatol Sport 2006; 23: 193–202

    Article  Google Scholar 

  54. Kendall FP, Mc Creary EK, Provance PG. Muscles: testing and function. 4th ed. Baltimore (MD): Williams and Wilkins, 1993

    Google Scholar 

  55. Downar JM, Sauers EL. Clinical measures of shoulder mobility in the professional base. J Athl Train 2005; 40: 23–9

    PubMed  Google Scholar 

  56. Downar JM, Sauers EL, Mourtacos SL. Chronic adaptations in the throwing shoulder of professional baseball players. J Athl Train 2002; 2: S17–8

    Google Scholar 

  57. Mc Quade KJ, Dawson J, Smidt GL. Scapulothoracic muscle fatigue associated with alterations in scapulohumeral rhythm kinematics during maximum resistive shoulder elevation. J Orthop Sports Phys Ther 1998; 28: 74–80

    Google Scholar 

  58. Ebaugh D, Mc Clure P, Karduna A. Effects of task intensity on changes in scapular kinematics [abstract]. American Society of Biomechanics Annual Meeting; 2003 Sep 25; Toledo

    Google Scholar 

  59. Tsai N-T, Mc Clure PW, Karduna AR. Effects of muscle fatigue on 3−dimensional scapular kinematics. Arch Phys Med Rehabil 2003; 84: 1000–5

    Article  PubMed  Google Scholar 

  60. Ebaugh DD, Mc Clure PW, Karduna AR. Scapulothoracic and glenohumeral kinematics following an external rotation fatigue protocol. J Orthop Sports Phys Ther 2006; 36: 557–71

    Article  PubMed  Google Scholar 

  61. Steindler A. Kinesiology of the human body under normal and pathological conditions. Springfield (IL): Charles C. Thomas, 1955

    Google Scholar 

  62. Hebert LJ, Moffet H, Mc Fadyen BJ, et al. Scapular behavior in shoulder impingement syndrome. Arch Phys Med Rehabil 2002; 83: 60–9

    Article  PubMed  Google Scholar 

  63. Mathiassen SE, Winkel J. Electromyographic activity in the shoulder: neck region according to shoulder arm position and glenohumeral torque. Eur J Appl Physiol 1990; 61: 370–9

    Article  CAS  Google Scholar 

  64. Schüldt C, Harms-Ringdahl K. Activity levels during isometric test contractions of neck and shoulder muscles. Scand J Rehabil Med 1988; 20: 117–27

    PubMed  Google Scholar 

  65. Host HH. Scapular taping in the treatment of anterior shoulder impingement. Phys Ther 1995; 75: 803–12

    PubMed  CAS  Google Scholar 

  66. Karduna AR, Kerner PJ, Lazarus MD. Contact forces in the subacromial space: effects of scapular orientation. J Shoulder Elbow Surg 2005; 14: 393–9

    Article  PubMed  Google Scholar 

  67. Glousman R. Electromyographic analysis and its role in the athletic shoulder. Clin Orthop Relat Res 1993; 288: 27–35

    PubMed  Google Scholar 

  68. Harryman DT, Sidles JA, Clark JM, et al. Translation of the humeral head on the glenoid with passive glenohumeral motion. J Bone Joint Surg 1990; 72-A: 1334–43

    Google Scholar 

  69. Myers JB, Laudner KG, Pasquale MR, et al. Glenohumeral range of motion deficits and posterior shoulder tightness in throwers with pathologic internal impingement. Am J Sports Med 2006; 34: 385–91

    Article  PubMed  Google Scholar 

  70. Huffman GR, Tibone JE, Mc Garry MH, et al. Path of glenohumeral articulation throughout the rotational range of motion in a thrower’s shoulder model. Am J Sports Med 2006; 34: 1662–9

    Article  PubMed  Google Scholar 

  71. Grossman MG, Tibone JE, Mc Garry MH, et al. A cadaveric model of the throwing shoulder: a possible etiology of superior labrum anterior—to—posterior lesions. J Bone Joint Surg Am 2005; 87: 824–31

    Article  PubMed  Google Scholar 

  72. Wilk KE, Meister K, Andrews JR. Current concepts in the rehabilitation of the overhead throwing athlete. Am J Sports Med 2002; 30: 136–51

    PubMed  Google Scholar 

  73. Wilk KE, Arrigo C. Current concepts in the rehabilitation of the athletic shoulder. J Orthop Sports Phys Ther 1993; 18: 365–77

    PubMed  CAS  Google Scholar 

  74. Kibler WB. Shoulder rehabilitation: principles and practice. Med Sci Sports Exerc 1998; 30: S40–50

    Google Scholar 

  75. Hintermeister RA, Lange GW, Schultheis JM, et al. Electromyographic activity and applied load during shoulder rehabilitation exercises using elastic resistance. Am J Sports Med 1998; 26: 210–20

    PubMed  CAS  Google Scholar 

  76. Wise MB, Uhl TL, Mattacola CG, et al. The effect of limb support on muscle activation during shoulder exercises. J Shoulder Elbow Surg 2004; 13: 614–20

    Article  PubMed  Google Scholar 

  77. Ekstrom RA, Donatelli RA, Soderberg GL. Surface electromyographic analysis of exercises for the trapezius and serratus anterior muscles. J Orthop Sports Phys Ther 2003; 33: 247–58

    PubMed  Google Scholar 

  78. Ludewig PM, Hoff MS, Osowski EE, et al. Relative balance of serratus anterior and upper trapezius muscle activity during push—up exercises. Am J Sports Med 2004; 32: 484–93

    Article  PubMed  Google Scholar 

  79. Moseley JB, Jobe FW, Pink M, et al. EMG analysis of the scapular muscles during a shoulder rehabilitation program. Am J Sports Med 1992; 20: 128–43

    Article  PubMed  Google Scholar 

  80. Decker MJ, Hintermeister RA, Faber KJ, et al. Serratus anterior muscle activity during selected rehabilitation exercises. Am J Sports Med 1999; 27: 784–91

    PubMed  CAS  Google Scholar 

  81. Cordasco FA, Wolfe IN, Wootten MA, et al. An electromyographic analysis of the shoulder during a medicine ball rehabilitation program. Am J Sports Med 1996; 24: 386–91

    Article  PubMed  CAS  Google Scholar 

  82. Myers JB, Lephart SM. The role of the sensorimotor system in the athletic shoulder. J Athl Train 2000; 35: 351–63

    PubMed  CAS  Google Scholar 

  83. Kibler WB. Closed kinetic chain rehabilitation for sports injuries. Phys Med Rehabil Clin N Am 2000; 11: 369–84

    PubMed  CAS  Google Scholar 

  84. Lewis JS, Wright C, Green A. Subacromial impingement syndrome: the effect of changing posture on shoulder range of movement. J Orthop Sports Phys Ther 2005; 35: 72–87

    PubMed  Google Scholar 

  85. Ackermann B, Adams R, Marshall E. The effect of scapula taping on electromyographic activity and musical performance in professional violinists. Aust J Physiother 2002; 48: 197–203

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank A. Depaifve for her kind and efficient technical assistance. No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bénédicte Forthomme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forthomme, B., Crielaard, JM. & Croisier, JL. Scapular Positioning in Athlete’s Shoulder. Sports Med 38, 369–386 (2008). https://doi.org/10.2165/00007256-200838050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200838050-00002

Keywords

Navigation