Skip to main content

Advertisement

Log in

Exercise, Vascular Wall and Cardiovascular Diseases

An Update (Part 1)

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) remains the leading cause of morbidity and premature mortality in both women and men in most industrialized countries, and has for some time also established a prominent role in developing nations. In fact, obesity, diabetes mellitus and hypertension are now commonplace even in children and youths. Regular exercise is rapidly gaining widespread advocacy as a preventative measure in schools, medical circles and in the popular media. There is overwhelming evidence garnered from a number of sources, including epidemiological, prospective cohort and intervention studies, suggesting that CVD is largely a disease associated with physical inactivity. A rapidly advancing body of human and animal data confirms an important beneficial role for exercise in the prevention and treatment of CVD.

In Part 1 of this review we discuss the impact of exercise on CVD, and we highlight the effects of exercise on (i) endothelial function by regulation of endothelial genes mediating oxidative metabolism, inflammation, apoptosis, cellular growth and proliferation, increased superoxide dismutase (SOD)-1, down-regulation of p67phox, changes in intracellular calcium level, increased vascular endothelial nitric oxide synthase (eNOS), expression and eNOS Ser-1177 phosphorylation; (ii) vascular smooth muscle function by either an increased affinity of the Ca2+ extrusion mechanism or an augmented Ca2+ buffering system by the superficial sarcoplasmic reticulum to increase Ca2+ sequestration, increase in K+ channel activity and/or expression, and increase in L-type Ca2+ current density; (iii) antioxidant systems by elevation of Mn-SOD, Cu/Zn-SOD and catalase, increases in glutathione peroxidase activity and activation of vascular nicotinamide adenine dinucleotide phosphate [(NAD(P)H] oxidase and p22phox expression; (iv) heat shock protein (HSP) expression by stimulating HSP70 expression in myocardium, skeletal muscle and even in human leucocytes, probably through heat shock transcription factor 1 activity; (v) inflammation by reducing serum inflammatory cytokines such as high-sensitivity C-reactive protein (hCRP), interleukin (IL)-6, IL-18 and tumour necrosis factor-α and by regulating Toll-like receptor 4 pathway.

Exercise also alters vascular remodelling, which involves two forms of vessel growth including angiogenesis and arteriogenesis. Angiogenesis refers to the formation of new capillary networks. Arteriogenesis refers to the growth of pre-existent collateral arterioles leading to formation of large conductance arteries that are well capable to compensate for the loss of function of occluded arteries. Another aim of this review is to focus on exercise-related cardiovascular protection against CVD and associated risk factors such as aging, coronary heart disease, hypertension, heart failure, diabetes mellitus and peripheral arterial diseases mediated by vascular remodelling. Lastly, this review examines the benefits of exercise in mitigating pre-eclampsia during pregnancy by mechanisms that include improved blood flow, reduced blood pressure, enhanced placental growth and vascularity, increased activity of antioxidant enzymes, reduced oxidative stress and restored vascular endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ekelund LG, Haskell WL, Johnson JL, et al. Physical fitness as a predictor of cardiovascular mortality in asymptomaticNorth American men. N Engl J Med 1988; 319: 1379–84

    Article  PubMed  CAS  Google Scholar 

  2. Paffenbarger RS, Hyde RT, Wing AL, et al. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med 1993; 328: 538–45

    Article  PubMed  Google Scholar 

  3. Blair SN, Kohl HW III, Barlow CE, et al. Changes in physical fitness and all-cause mortality: a prospective studyof healthy and unhealthy men. JAMA 1995; 273: 1093–8

    Article  PubMed  CAS  Google Scholar 

  4. Leon AS, Cornett J, Jacobs DR, et al. Leisure-time physical activity levels and risk of coronary heart disease and death:the Multiple Risk Factor Intervention Study. JAMA 1987;258: 2388–95

    Article  PubMed  CAS  Google Scholar 

  5. Powell KE, Thompson PD, Caspersien CJ, et al. Physical activity and the incidence of coronary heart disease. AnnuRev Public Health 1987; 8: 253–87

    Article  PubMed  CAS  Google Scholar 

  6. Mittleman MA, Maclure M, Tofler GH, et al. Triggering of acute myocardial infarction by heavy physical exertion:protection against triggering by regular exertion. N Engl J Med 1993; 329: 1677–83

    Article  PubMed  CAS  Google Scholar 

  7. Willich SN, Lewis M, Lowel H, et al. Physical exertion as a trigger of acute myocardial infarction. N Engl J Med 1993; 329: 1684–90

    Article  PubMed  CAS  Google Scholar 

  8. Balady GJ, Fletcher BJ, Froelicher ES, et al. Cardiac rehabilitation programs: a statement for healthcare professionals from the American Heart Association. Circulation 1994; 90: 1602–10

    Article  Google Scholar 

  9. Pate RR, Pratt M, Blair SN, et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995; 273: 402–7

    Article  PubMed  CAS  Google Scholar 

  10. Henrion D. Pressure and flow-dependent tone in resistance arteries. Role of myogenic tone. Arch Mal Coeur Vaiss 2005; 98: 913–21

    PubMed  CAS  Google Scholar 

  11. Hambrecht R, Adams V, Erbs S, et al. Regular physical activity improves endothelial function in patients withcoronary artery disease by increasing phosphorylation ofendothelial nitric oxide synthase. Circulation 2003; 107: 3152–8

    Article  PubMed  CAS  Google Scholar 

  12. Wasserman SM, Mehraban F, Komuves LG, et al. Gene expression profile of human endothelial cells exposed tosustained fluid shear stress. Physiol Genomics 2002; 12: 13–23

    PubMed  CAS  Google Scholar 

  13. Rush JW, Turk JR, Laughlin MH. Exercise training regulates SOD-1 and oxidative stress in porcine aorticendothelium. Am J Physiol Heart Circ Physiol 2003; 284:1378–87

    Google Scholar 

  14. Jen CJ, Chan HP, Chen HI. Chronic exercise improves endothelial calcium signaling and vasodilatation inhypercholesterolemic rabbit femoral artery. Arterioscler Thromb Vasc Biol 2002; 22: 1219–24

    Article  PubMed  CAS  Google Scholar 

  15. Jen CJ, Liu YF, Chen HI. Short-term exercise training improves vascular function in hypercholesterolemic rabbit femoral artery. Chin J Physiol 2005; 48: 79–85

    Google Scholar 

  16. Jen CJ, Chan HP, Chen HI. Acute exercise enhances vasorelaxation by modulating endothelial calcium signalingin rat aortas. Am J Physiol Heart Circ Physiol 2002; 282: 977–82

    Google Scholar 

  17. Laughlin MH, Pollock JS, Amann JF, et al. Training induces nonuniform increases in eNOS content along thecoronary arterial tree. J Appl Physiol 2001; 90: 501–10

    PubMed  CAS  Google Scholar 

  18. Woodman CR, Muller JM, Laughlin MH, et al. Induction of nitric oxide synthase mRNA in coronary resistance arteriesisolated from exercise-trained pigs. Am J Physiol 1997; 273: 2575–9

    Google Scholar 

  19. Sessa WC, Pritchard K, Seyedi N, et al. Chronic exercise in dogs increases coronary vascular nitric oxide productionand endothelial cell nitric oxide synthase gene expression. Circ Res 1994; 74: 349–53

    Article  PubMed  CAS  Google Scholar 

  20. Heaps CL, Mattox ML, Kelly KA, et al. Exercise training increases basal tone in arterioles distal to chronic coronaryocclusion. Am J Physiol Heart Circ Physiol 2006; 290: 1128–35

    Article  CAS  Google Scholar 

  21. McAllister RM, Delp MD, Thayer KA, et al. Muscle blood flow during exercise in sedentary and trained hypothyroidrats. Am J Physiol 1995; 269: 1949–54

    Google Scholar 

  22. Laughlin MH, Woodman CR, Schrage WG, et al. Interval sprint training enhances endothelial function and eNOScontent in some arteries that perfuse white gastrocnemiusmuscle. J Appl Physiol 2004; 96: 233–44

    Article  PubMed  CAS  Google Scholar 

  23. McAllister RM, Jasperse JL, Laughlin MH. Nonuniform effects of endurance exercise training on vasodilation in ratskeletal muscle. J Appl Physiol 2005; 98: 753–61

    Article  PubMed  CAS  Google Scholar 

  24. Bowles DK. Adaptation of ion channels in the microcirculation to exercise training. Microcirculation 2000; 7:25–40

    Article  PubMed  CAS  Google Scholar 

  25. Bowles DK, Woodman CR, Laughlin MH. Coronary smooth muscle and endothelial adaptations to exercisetraining. Exerc Sport Sci Rev 2000; 28: 57–62

    PubMed  CAS  Google Scholar 

  26. Laughlin MH, Korthuis RJ, Duncker DJ, et al. Chapter 16: control of blood flow to cardiac and skeletal muscle during exercise. In: Powelland LB, Shepherd JT, editors. Handbook of physiology, section 120. Exercise: regulationand integration of multiple systems. New York: American Physiological Society and Oxford UniversityPress, 1996

    Google Scholar 

  27. Haskell WL, Sims C, Myll J, et al. Coronary artery size and dilating capacity in ultradistance runners. Circulation 1993; 87: 1076–82

    Article  PubMed  CAS  Google Scholar 

  28. Bowles DK, Laughlin MH, Sturek M. Exercise training alters the Ca2+ and contractile responses of coronaryarteries to endothelin. J Appl Physiol 1995; 78: 1079–87

    PubMed  CAS  Google Scholar 

  29. Laher I, Zhang JH. Protein kinase C and cerebral vasospasm. J Cereb Blood Flow Metab 2001; 21: 887–906

    Article  PubMed  CAS  Google Scholar 

  30. Nishizawa S, Laher I. Signaling mechanisms in cerebral vasospasm. Trends Cardiovasc Med 2005; 15: 24–34

    Article  PubMed  CAS  Google Scholar 

  31. Marasciulo FL, Montagnani M, Potenza MA. Endothelin- 1: the yin and yang on vascular function. Curr Med Chem 2006; 13: 1655–65

    Article  PubMed  CAS  Google Scholar 

  32. Symons JD, Rendig SV, Stebbins CL, et al. Microvascular and myocardial contractile responses to ischemia: influenceof exercise training. J Appl Physiol 2000; 88: 433–42

    PubMed  CAS  Google Scholar 

  33. Bowles DK, Laughlin MH, Sturek M. Exercise training increases K+-channel contribution to regulation of coronaryarterial tone. J Appl Physiol 1998; 84: 1225–33

    PubMed  CAS  Google Scholar 

  34. Mokelke EA, Hu O, Song M, et al. Altered functional coupling of coronary K+ channels in diabetic dyslipidemicpigs is prevented by exercise. J Appl Physiol 2003; 95: 1179–93

    PubMed  CAS  Google Scholar 

  35. Witczakm CA, Sturek M. Exercise prevents diabetesinduced impairment in superficial buffer barrier in porcinecoronary smooth muscle. J Appl Physiol 2004; 96: 1069–79

    Article  Google Scholar 

  36. Bowles DK. Gender influences coronary L-type Ca2+ current and adaptation to exercise training in miniatureswine. J Appl Physiol 2001; 91: 2503–10

    PubMed  CAS  Google Scholar 

  37. Korzick DH, Muller-Delp JM, Dougherty P, et al. Exaggerated coronary vasoreactivity to endothelin-1 in agedrats: role of protein kinase C. Cardiovasc Res 2005; 66: 384–92

    Article  PubMed  CAS  Google Scholar 

  38. Karolkiewicz J, Szczêsniak L, Deskur-Smielecka E, et al. Oxidative stress and antioxidant defense system in healthy,elderly men: relationship to physical activity. Aging Male 2003; 6: 100–5

    PubMed  CAS  Google Scholar 

  39. Inoue N, Ramasamy S, Fukai T, et al. Shear stress modulates expression of Cu/Zn superoxide dismutase in humanaortic endothelial cells. Circ Res 1996; 79: 32–7

    Article  PubMed  CAS  Google Scholar 

  40. Hollander J, Fiebig R, Gore M, et al. Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptationto endurance training. Am J Physiol 1999; 277: 856–62

    Google Scholar 

  41. De Keulenaer GW, Chappell DC, Ishizaka N, et al. Oscillatory and steady laminar shear stress differentially affecthuman endothelial redox state: role of a superoxideproducingNADH oxidase. Circ Res 1998; 82: 1094–101

    Article  PubMed  Google Scholar 

  42. Reddy Avula CP, Fernandes G. Modulation of antioxidant enzymes and lipid peroxidation in salivary gland and othertissues in mice by moderate treadmill exercise. Aging 1999; h11: 246–52

    Google Scholar 

  43. Karanth J, Jeevaratnam K. Oxidative stress and antioxidant status in rat blood, liver and muscle: effect ofdietary lipid, carnitine and exercise. Int J Vitam Nutr Res 2005; 75: 333–9

    Article  PubMed  CAS  Google Scholar 

  44. Silacci P, Desgeorges A, Mazzolai L, et al. Flow pulsatility is a critical determinant of oxidative stress in endothelialcells. Hypertension 2001; 38: 1162–6

    Article  PubMed  CAS  Google Scholar 

  45. Park JY, Ferrell RE, Park JJ, et al. NADPH oxidase p22phox gene variants are associated with systemic oxidativestress biomarker responses to exercise training. J Appl Physiol 2005; 99: 1905–11

    Article  PubMed  CAS  Google Scholar 

  46. Locke M, Tanguay RM, Klabunde RE, et al. Enhanced postischemic myocardial recovery following exercise inductionof HSP 72. Am J Physiol 1995; 269: 320–5

    Google Scholar 

  47. Murlasits Z, Cutlip RG, Geronilla KB, et al. Resistance training increases heat shock protein levels in skeletal muscle of young and old rats. Exp Gerontol 2006; 41: 398–406

    Article  PubMed  CAS  Google Scholar 

  48. Puntschart A, Vogt M, Widmer HR, et al. Hsp70 expression in human skeletal muscle after exercise. Acta Physiol Scand 1996; 157: 411–7

    Article  PubMed  CAS  Google Scholar 

  49. Fehrenbach E, Passek F, Niess AM, et al. HSP expression in human leukocytes is modulated by endurance exercise. Med Sci Sports Exerc 2000; 2: 592–600

    Google Scholar 

  50. Locke M, Noble EG, Tanguay RM, et al. Activation of heat-shock transcription factor in rat heart after heat shockand exercise. Am J Physiol 1995; 268: 1387–94

    Google Scholar 

  51. Hagg U, Johansson ME, Gronros J, et al. Gene expression profile and aortic vessel distensibility in voluntarily exercisedspontaneously hypertensive rats: potential role ofheat shock proteins. Physiol Genomics 2005; 22: 319–26

    Article  PubMed  Google Scholar 

  52. Ascensao A, Magalhaes J, Soares J, et al. Endurance training attenuates doxorubicin-induced cardiac oxidativedamage in mice. Int J Cardiol 2005; 100: 451–60

    Article  PubMed  Google Scholar 

  53. Moran M, Delgado J, Gonzalez B, et al. Responses of rat myocardial antioxidant defences and heat shock proteinHSP72 induced by 12 and 24-week treadmill training. ActaPhysiol Scand 2004; 180: 157–66

    Article  PubMed  CAS  Google Scholar 

  54. Paroo Z, Dipchand ES, Noble EG. Estrogen attenuates postexercise HSP70 expression in skeletal muscle. Am JPhysiol Cell Physiol 2002; 282: 245–51

    Google Scholar 

  55. Paroo Z, Haist JV, Karmazyn M, et al. Exercise improves postischemic cardiac function in males but not females:consequences of a novel sex-specific heat shock protein 70 response. Circ Res 2002; 90: 911–7

    Article  PubMed  CAS  Google Scholar 

  56. Marini M, Lapalombella R, Margonato V, et al. Mild exercise training, cardioprotection and stress genes profile. Eur J Appl Physiol 2007; 99: 503–10

    Article  PubMed  Google Scholar 

  57. Libby P. What have we learned about the biology of atherosclerosis? The role of inflammation. Am J Cardiol 2001; 88: 3J–6J

    PubMed  CAS  Google Scholar 

  58. Sloan RP, Shapiro PA, Demeersman RE, et al. Aerobic exercise attenuates inducible TNF production in humans. J Appl Physiol 2007; 103: 1007–11

    Article  PubMed  Google Scholar 

  59. Rauramaa R, Halonen P, Väisänen SB, et al. Effects of aerobic physical exercise on inflammation and atherosclerosisin men. The DNASCO study: a six-year randomized,controlled trial. Ann Intern Med 2004; 140: 1007–14

    PubMed  Google Scholar 

  60. Ford ES. Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults. Epidemiology 2002; 13: 561–8

    Article  PubMed  Google Scholar 

  61. King DE, Carek P, Mainous AG 3rd, et al. Inflammatory markers and exercise: differences related to exercise type. Med Sci Sports Exerc 2003; 35: 575–81

    Article  PubMed  Google Scholar 

  62. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers:a systematic review. J Am Coll Cardiol 2005; 45: 1563–9

    Article  PubMed  CAS  Google Scholar 

  63. Hamer M. The relative influences of fitness and fatness on inflammatory factors. Prev Med 2007; 44: 3–11

    Article  PubMed  Google Scholar 

  64. Hamer M. The anti-hypertensive effects of exercise: integrating acute and chronic mechanisms. Sports Med 2006;36: 109–16

    Article  PubMed  Google Scholar 

  65. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 2005; 98: 1154–62

    Article  PubMed  CAS  Google Scholar 

  66. Festa A, D’Agostino Jr R, Howard G, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome:the insulin resistance atherosclerosis study (IRAS).Circulation 2000; 102: 42–7

    Article  PubMed  CAS  Google Scholar 

  67. Pedersen BK, Bruunsgaard H, Ostrowski K, et al. Cytokines in aging and exercise. Int J Sports Med 2002; 1:4–9

    Google Scholar 

  68. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 2006; 83: 456S–60S

    PubMed  CAS  Google Scholar 

  69. Plaisance EP, Grandjean PW. Physical activity and high-sensitivity C-reactive protein. Sports Med 2006; 36:443–58

    Article  PubMed  Google Scholar 

  70. Plaisance EP, Taylor JK, Alhassan S, et al. Cardiovascular fitness and vascular inflammatory markers after acuteaerobic exercise. Int J Sport Nutr Exerc Metab 2007; 17: 152–62

    PubMed  CAS  Google Scholar 

  71. Geffken DF, Cushman M, Burke GL, et al. Association between physical activity and markers of inflammation ina healthy elderly population. Am J Epidemiol 2001; 153:242–50

    Article  PubMed  CAS  Google Scholar 

  72. Mattusch F, Dufaux B, Heine O, et al. Reduction of the plasma concentration of C-reactive protein following ninemonths of endurance training. Int J Sports Med 2000; 21: 21–4

    Article  PubMed  CAS  Google Scholar 

  73. Rohde LE, Hennekens CH, Ridker PM. Survey of Creactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol 1999; 4: 1018–22

    Article  Google Scholar 

  74. Dufaux B, Order U, Geyer H, et al. C-reactive protein serum concentrations in well-trained athletes. Int J Sports Med 1984; 5: 102–6

    Article  PubMed  CAS  Google Scholar 

  75. Kohut ML, McCann DA, Russell DW, et al. Aerobic exercise, but not flexibility/resistance exercise, reduces serumIL-18, CRP, and IL-6 independent of beta-blockers, BMI,and psychosocial factors in older adults. Brain Behav Immun 2006; 20: 201–9

    Article  PubMed  CAS  Google Scholar 

  76. McFarlin BK, Flynn MG, Campbell WW, et al. TLR4 is lower in resistance-trained older women and related toin flammatory cytokines. Med Sci Sports Exerc 2004; 36: 1876–83

    Article  PubMed  CAS  Google Scholar 

  77. McFarlin BK, Flynn MG, Campbell WW, et al. Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J Gerontol A Biol Sci MedSci 2006; 61: 388–93

    Article  PubMed  Google Scholar 

  78. Bloor CM, Leon AS. Interaction of age and exercise on the heart and its blood supply. Lab Invest 1970; 22: 160–5

    PubMed  CAS  Google Scholar 

  79. Tomanek RJ. Effects of age and exercise on the extent of the myocardial capillary bed. Anat Rec 1970; 167: 55–62

    Article  PubMed  CAS  Google Scholar 

  80. Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEBJ 1999; 13: 9–22

    CAS  Google Scholar 

  81. Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature 2000; 14; 242–8

    Article  Google Scholar 

  82. Dimmeler S, Hermann C, Zeiher AM. Apoptosis of endothelial cells. Contribution to the pathophysiology ofatherosclerosis? Eur Cytokine Netw 1998; 9: 697–8

    PubMed  CAS  Google Scholar 

  83. Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the proteinkinase Akt. Nature 1999; 399: 597–601

    Article  PubMed  CAS  Google Scholar 

  84. Ziche M, Morbidelli L, Choudhuri R, et al. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor induce dangiogenesis. J Clin Invest 1997; 99: 2625–34

    Article  PubMed  CAS  Google Scholar 

  85. Morbidelli L, Chang CH, Douglas JG, et al. Nitric oxide mediates mitogenic effect of VEGF on coronary venularendothelium. Am J Physiol 1996; 270: 411–5

    Google Scholar 

  86. Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. In: Peachey LD, editor. Handbook of physiology: skeletal muscle. Baltimore, (MD): American Physiological Society, 1983: 555–631

    Google Scholar 

  87. Iemitsu M, Maeda S, Jesmin S, et al. Exercise training improves aging-induced downregulation of VEGF angiogenicsignaling cascade in hearts. Am J Physiol Heart Circ Physiol 2006; 291: 1290–8

    Article  CAS  Google Scholar 

  88. Sandri M, Adams V, Gielen S, et al. Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor cells in patients with ischemicsyndromes: results of 3 randomized studies. Circulation 2005; 111: 3391–9

    Article  PubMed  Google Scholar 

  89. Thompson PD, Lim V. Physical activity in the prevention of atherosclerotic coronary heart disease. Curr Treat OptionsCardiovasc Med 2003; 5: 279–85

    Article  PubMed  Google Scholar 

  90. Blair SN, Horton E, Leon AS, et al. Physical activity, nutrition, and chronic disease. Med Sci Sports Exerc 1996; 28: 335–49

    PubMed  CAS  Google Scholar 

  91. Richter B, Niessner A, Penka M, et al. Endurance training reduces circulating asymmetric dimethylarginine and myeloperoxidaselevels in persons at risk of coronary events. Thromb Haemost 2005; 94: 1306–11

    PubMed  CAS  Google Scholar 

  92. Rehman J, Li J, Parvathaneni L, et al. Exercise acutely increases circulating endothelial progenitor cells andmonocyte-/macrophage-derived angiogenic cells. J AmColl Cardiol 2004; 43: 2314–8

    Article  PubMed  Google Scholar 

  93. Steiner S, Niessner A, Ziegler S, et al. Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis 2005; 181: 305–10

    Article  PubMed  CAS  Google Scholar 

  94. Laufs U, Urhausen A, Werner N, et al. Running exercise of different duration and intensity: effect on endothelial progenitorcells in healthy subjects. Eur J Cardiovasc Prev Rehabil 2005; 12: 407–14

    Article  PubMed  Google Scholar 

  95. Wenzel D, Schmidt A, Reimann K, et al. Endostatin, the proteolytic fragment of collagen XVIII, induces vasorelaxation. Circ Res 2006; 98: 1203–11

    Article  PubMed  CAS  Google Scholar 

  96. Marneros AG, Olsen BR. Physiological role of collagen XVIII and endostatin. FASEB J 2005; 19: 716–28

    Article  PubMed  CAS  Google Scholar 

  97. Felbor U, Dreier L, Bryant RA, et al. Secreted cathepsinL generates endostatin from collagen XVIII. EMBO J 2000; 19: 1187–94

    Article  PubMed  CAS  Google Scholar 

  98. Gu JW, Gadonski G, Wang J, et al. Exercise increases endostatin in circulation of healthy volunteers. BMC Physiol 2004; 4: 2

    Article  PubMed  Google Scholar 

  99. Brixius K, Schoenberger S, Ladage D, et al. Long-term endurance exercise decreases antiangiogenic endostatinsignalling in overweight men aged 50-60 years. Br J SportsMed 2008; 42: 126–9

    Article  PubMed  CAS  Google Scholar 

  100. Sane DC, Anton L, Brosnihan KB. Angiogenic growth factors and hypertension. Angiogenesis 2004; 7: 193–201

    Article  PubMed  CAS  Google Scholar 

  101. Ziada AM, Hassan MO, Tahlilkar KI, et al. Long-term exercise training and angiotensin-converting enzyme inhibitiondifferentially enhance myocardial capillarizationin the spontaneously hypertensive rat. J Hypertens 2005;23: 1233–40

    Article  PubMed  CAS  Google Scholar 

  102. Gustafsson T, Bodin ZK, Sylvén C, et al. Increased expression of VEGF following exercise training in patients with heart failure.Eur J Clin Invest 2001; 31: 362–6

    Article  PubMed  CAS  Google Scholar 

  103. Kivelä R, Silvennoinen M, Touvra AM, et al. Effects of experimental type 1 diabetes and exercise training on angiogenicgene expression and capillarization in skeletalmuscle. FASEB J 2006; 20: 1570–2

    Article  PubMed  CAS  Google Scholar 

  104. Brown MD. Exercise and coronary vascular remodelling in the healthy heart. Exp Physiol 2003; 88: 645–58

    Article  PubMed  Google Scholar 

  105. Stevenson JAF, Feleki V, Rechnitzer V, et al. Effect of exercise on coronary tree size in the rat. Circ Res 1964; 25: 265–70

    Article  Google Scholar 

  106. Leon AS, Bloor CM. Effects of exercise and its cessation on the heart and its blood supply. J Appl Physiol 1968; 24: 485–90

    PubMed  CAS  Google Scholar 

  107. Kramsch DM, Aspen AJ, Abramowitz BM, et al. Reduction of coronary atherosclerosis by moderate conditioningexercise in monkeys on an atherogenic diet. N Engl J Med 1981; 305: 1483–9

    Article  PubMed  CAS  Google Scholar 

  108. Morris JN, Crawford MD. Coronary heart disease and physical activity of work: evidence of a national necropsysurvey. BMJ 1958; 5111: 1485–96

    Article  Google Scholar 

  109. Wyatt HL, Mitchell J. Influences of physical conditioning and deconditioning on coronary vasculature of dogs. J Appl Physiol 1978; 45: 619–25

    PubMed  CAS  Google Scholar 

  110. Belardinelli R, Georgiou D, Ginzton L, et al. Effects of moderate exercise training on thallium uptake and contractileresponse to low-dose dobutamine of dysfunctionalmyocardium in patients with ischemic cardiomyopathy. Circulation 1998; 97: 553–61

    Article  PubMed  CAS  Google Scholar 

  111. Sim DN, Neill WA. Investigation of the physiological basis for increased exercise threshold for angina pectoris afterphysical conditioning. J Clin Invest 1974; 54: 763–70

    Article  PubMed  CAS  Google Scholar 

  112. Girolami B, Bernardi E, Prins MH, et al. Treatment of intermittent claudication with physical training, smokingcessation, pentoxifylline, or nafronyl: a meta-analysis. Arch Intern Med 1999; 159: 337–45

    Article  PubMed  CAS  Google Scholar 

  113. Remijnse-Tamerius HC, Duprez D, De Buyzere M, et al. Why is training effective in the treatment of patients withintermittent claudication? Int Angiol 1999; 18: 103–12

    PubMed  CAS  Google Scholar 

  114. Shaffer RG, Greene S, Arshi A, et al. Effect of acute exercise on endothelial progenitor cells in patients with peripheralarterial disease. Vasc Med 2006; 11: 219–26

    Article  PubMed  Google Scholar 

  115. Andreozzi GM, Leone A, Laudani R, et al. Acute impairment of the endothelial function by maximal treadmillexercise in patients with intermittent claudication, andits improvement after supervised physical training. IntAngiol 2007; 26: 12–7

    PubMed  CAS  Google Scholar 

  116. American College of Obstetricians and Gynecologists. Hypertension in pregnancy. ACOG Tech Bull 1996; 219: 1–8

    Google Scholar 

  117. National High Blood Pressure Education Program working group report on high blood pressure in pregnancy. Bethesda(MD): National Institutes of Health, Jul 2000. NIHpublication No. 00-3029

  118. Sorensen TK, Williams MA, Lee IM, et al. Recreational physical activity during pregnancy and risk of preeclampsia. Hypertension 2003; 41: 1273–80

    Article  PubMed  CAS  Google Scholar 

  119. Kaaja R, Tikkanen MJ, Viinikka L, et al. Serum lipoproteins, insulin, and urinary prostanoid metabolites innormal and hypertensive pregnant women. Obstet Gynecol 1995; 85: 353–6

    Article  PubMed  CAS  Google Scholar 

  120. Walsh SW, Wang Y. Deficient glutathione peroxidase activity in preeclampsia is associated with increased placentalproduction of thromboxane and lipid peroxides. Am JObstet Gynecol 1993; 169: 1456–61

    CAS  Google Scholar 

  121. Williams MA, Farrand A, Mittendorf R, et al. Maternal second trimester serum tumor necrosis factor-alphasolublereceptor p55 (sTNFp55) and subsequent risk ofpreeclampsia. Am J Epidemiol 1999; 149: 323–9

    Article  PubMed  CAS  Google Scholar 

  122. Rajkovic A, Mahomed K, Malinow MR, et al. Plasma homocyst(e)ine concentrations in eclamptic and preeclampticAfrican women postpartum. Obstet Gynecol 1999; 94: 355–60

    Article  PubMed  CAS  Google Scholar 

  123. Xia Y, Ramin SM, Kellems RE. Potential roles of angiotensin receptor-activating autoantibody in the pathophysiologyof preeclampsia. Hypertension 2007; 50:269–75

    Article  PubMed  CAS  Google Scholar 

  124. Heenan AP, Wolfe LA, Davies GA, et al. Effects of human pregnancy on fluid regulation responses to short-term exercise.J Appl Physiol 2003; 95: 2321–7

    PubMed  Google Scholar 

  125. Eneroth-Grimfors E, Bevegård S, Nilsson BA, et al. Effect of exercise on catecholamines and plasma renin activity inpregnant women. Acta Obstet Gynecol Scand 1988; 67: 519–23

    Article  PubMed  CAS  Google Scholar 

  126. Borekci B, Aksoy H, Al RA, et al. Maternal serum interleukin-10, interleukin-2 and interleukin-6 in preeclampsiaand eclampsia. Am J Reprod Immunol 2007; 58: 56–64

    Article  PubMed  CAS  Google Scholar 

  127. Kassab S, Miller MT, Hester R, et al. Systemic hemodynamics and regional blood flow during chronic nitric oxidesynthesis inhibition in pregnant rats. Hypertension 1998;31: 315–20

    Article  PubMed  CAS  Google Scholar 

  128. Khalil RA, Crews JK, Novak J, et al. Enhanced vascular reactivity during inhibition of nitric oxide synthesis inpregnant rats. Hypertension 1998; 31: 1065–9

    Article  PubMed  CAS  Google Scholar 

  129. Agatisa PK, Ness RB, Roberts JM, et al. Impairment of endothelial function in women with a history of preeclampsia:an indicator of cardiovascular risk. Am J PhysiolHeart Circ Physiol 2004; 286: 1389–93

    Article  Google Scholar 

  130. Marcoux S, Brisson J, Fabia J. The effect of leisure time physical activity on the risk of pre-eclampsia and gestational hypertension. J Epidemiol Community Health 1989; 43: 147–52

    Article  PubMed  CAS  Google Scholar 

  131. Meher S, Duley L. Exercise or other physical activity for preventing pre-eclampsia and its complications. CochraneDatabase Syst Rev 2006; (2): CD005942

    PubMed  Google Scholar 

  132. Rudra CB, Williams MA, Lee IM, et al. Perceived exertion during prepregnancy physical activity and preeclampsiarisk. Med Sci Sports Exerc 2005; 37: 1836–41

    Article  PubMed  Google Scholar 

  133. McManus BM, Waller BF, Graboys TB, et al. Current problems in cardiology: exercise and sudden death. Part I. Chicago, IL: Year Book Medical Publishers, 1981 Dec: 1–89

    Google Scholar 

  134. McManus BM, Waller BF, Graboys TB, et al. Current problems in cardiology: exercise and sudden death. Part II.Chicago (IL): Year Book Medical Publishers, 1982 Jan: 1–67

    Google Scholar 

Download references

Acknowledgements

We are thankful to Prof. Bruce McManus and Dr Jonathan Wanagat for their helpful comments and suggestions on this manuscript. This study was funded by CUHK Direct Grant (2041380), Research Grants Council of Hong Kong SAR, CUHK Li Ka Shing Institute of Health Sciences, CUHK Focused Investment Scheme, and The Canadian Heart and Stroke Foundation (IL). LMY and FPL were supported by these grants. The authors have no conflicts of interest directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, F.P., Yung, L.M., Laher, I. et al. Exercise, Vascular Wall and Cardiovascular Diseases. Sports Med 38, 1009–1024 (2008). https://doi.org/10.2165/00007256-200838120-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200838120-00005

Keywords

Navigation