Skip to main content
Log in

Dynamic Modelling of Infectious Diseases

An Application to the Economic Evaluation of Influenza Vaccination

  • Original Research Article
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

Objective

To evaluate the economic efficiency of influenza vaccination using both dynamic and static modelling approaches.

Setting

The Spanish National Health System.

Design and methods

We modelled the progress of an influenza epidemic in Spain according to the epidemiological pattern of susceptible?infective?resistant, employing a non-linear system of ordinary differential equations that enables the measurement of epidemiological effects of an anti-influenza vaccination. We used a decision tree to represent the repercussion on healthcare resources use and on financial resources. The same analyses were conducted using a static approach, and the results were compared. Healthcare costs were valued in €, year 2005 values.

Results

For the base case, the impact of the healthcare intervention (vaccination) was not efficient from the perspective of the healthcare payer when using a static approach (return rate 0.28 per € invested in vaccination). Nevertheless, it was efficient when employing a dynamic approach (return rate 1.22 per €). Furthermore, a considerable freeing of healthcare resources would have been produced over the entire influenza season.

Conclusions

The indirect effect of vaccination on the non-vaccinated individuals (the ‘herd immunity effect’) can be greater than the direct effect on individuals vaccinated. This implies that the herd immunity effect needs to be taken into consideration in the economic evaluations of prophylactic measures employed against infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4
Table II

Similar content being viewed by others

References

  1. Soto J. Pharmacoeconomic studies: why, how, when and for what? [in Spanish]. Medifam 2001; 11 (3): 147–155

    Google Scholar 

  2. Drummond M, O’Brien BJ, Stoddart ’GL, et al. Methods for the economic evaluation of health care programmes [in Spanish]. Madrid: Díaz de Santos, 2001

    Google Scholar 

  3. Service of Evaluation of Health Technologies. Guide of economic evaluation in the sanitary sector [in Spanish]. Osteba: Vitoria-Gasteiz, 1999

    Google Scholar 

  4. Edmunds WJ, Medley GF, Nokes DJ. Evaluating the cost-effectiveness of vaccination programmes: a dynamic perspective. Stat Med 1999; 18 (23): 3263–3282

    Article  PubMed  CAS  Google Scholar 

  5. Rodrigo C. Glossary. In: Arístegui J, Corretger JM, Moraga F, et al., editors. Child vaccinations: from theory to practice [in Spanish]. Bilbao: Ciclo Editorial, 2004: 23–31

  6. Lynd LD, Goeree R, O’Brien BJ. Antivira’ agents for influenza. Pharmacoeconomics 2005; 23 (11): 1083–1106

    Article  PubMed  CAS  Google Scholar 

  7. Sander B, Hayden FG, Gyldmark M, et al. Post-exposure influenza prophylaxis with oseltamivir. Pharmacoeconomics 2006; 24 (4): 373–386

    Article  PubMed  Google Scholar 

  8. Zill DG, Cullen MR. Differential equations with frontier values problems. 5th ed. Mexico: Thomson Learning, 2002

    Google Scholar 

  9. Blanc hard P, Devaney RL, Hall GR. Differential equations [in Spanish]. Mexico: Internacional Thomson Editores, 1999

    Google Scholar 

  10. Klein M. Mathematical methods for economics. Boston (MA): Addison-Wesley, 1998

    Google Scholar 

  11. Braun M. Differential equations and their applications [in Spanish]. Mexico: Grupo Editorial Iberoamérica, 1990

    Google Scholar 

  12. Gestal JJ. Acute respiratory infections: influenza [in Spanish]. In: Piédrola G, del Rey J, Domínguez M, et al., editors. Preventive medicine and public health. 9th ed [in Spanish]. Barcelona: Ediciones Científicas y Técnicas, 1994: 491–516

    Google Scholar 

  13. Keeling, M. The mathematics of diseases. Plus Magazine 2001; (14). Cambridge (UK): University of Cambridge, 2001 [online]. Available from URL: http://pass.maths.org.uk/issuel4/features/diseases/index-gifd.html [Accessed 2007 Oct 3]

    Google Scholar 

  14. Anderson RM, May RM. Population biology of infectious diseases: part I. Nature 1979; 280 (5721): 361–367

    Article  PubMed  CAS  Google Scholar 

  15. Anderson RM, May RM. Directly transmitted infectious diseases: control by vaccination. Science 1982; 215: 1053–1160

    Article  PubMed  CAS  Google Scholar 

  16. Thieme HR, Yang J. An endemic model with variable re-infection rate and applications to influenza. Math Biosci 2002; 180: 207–235

    Article  PubMed  Google Scholar 

  17. Lavenu A, Valleron AJ, Carrat F. Exploring cross-protection between influenza strains by an epidemiological model. Virus Res 2004; 103 (1–2): 101–105

    Article  PubMed  CAS  Google Scholar 

  18. Boni MF, Gog JR, Andreasen V, et al. Influenza drift and epidemic size: the race between generating and escaping immunity. Theor Pop Biol 2004; 65: 179–191

    Article  Google Scholar 

  19. National Centre of Epidemiology. Epidemiologic commentary about diseases of obligatory notification and system of microbiological information [in Spanish]. Bol Epidemol Semanal 2004; 12 (10): 101–106

    Google Scholar 

  20. Gil de Gómez MJ, López MJ. Influenza in the autonomous community of La Rioja: activity of the disease and evaluation of the vaccination campaign. Recommendation of anti-influenza vaccine for the 2001–2002 season [in Spanish]. Bol Epidemiol de La Rioja 2001; 165: 1167–1171

    Google Scholar 

  21. Arrazola MP. Anti-influenza vaccination in adults. In Vaccines recommendations. Investigation Group of Madrid. Boletín 3 [in Spanish]. Madrid: Asociación para la Formación e Investigación en Salud Publica, 2004: 33–46

    Google Scholar 

  22. Pumarola T, Marcos MA, Jiménez de Anta MT. Influenza quimioprofilaxis [in Spanish]. Vacunas 2002; 3 Suppl. 1: 24–27

    Google Scholar 

  23. Kincaid D, Cheney W. Numerical analysis: the mathematics of the scientific calculus [in Spanish]. Wilmington (DE): Addison Wesley Iberoamericana, 1994

    Google Scholar 

  24. Anderson RM, May RM. Infectious diseases of humans: dynamic s and control. New York: Oxford University Press, 1999

    Google Scholar 

  25. Garcia de Codes A, Arrazola MP, de Juanes JR, et al. Anti-influenza vaccination in healthcare staff: strategies to increase the coverage in a general hospital [in Spanish]. Med Clin (Bare) 2004; 123 (14): 532–534

    Article  Google Scholar 

  26. Martínez-Martínez F. Strategies and coverage of anti-influenza vaccination of primary care staff: retrospective study [in Spanish]. Vacunas 2004; 5 (2): 35–37

    Google Scholar 

  27. Pastor MA, Schwuarz H, Pedrera V, et al. Anti-influenza vaccination state of primary care staff [in Spanish]. Aten Primaria 2004; 33 (3): 161

    Article  Google Scholar 

  28. Mayo E, Hernández V, Carrasco P, et al. Evolution of anti-influenza vaccination in the community of Madrid between the years 1993 and 2001 [in Spanish]. Vacunas 2005; 6 (2): 41–45

    Article  Google Scholar 

  29. Peña A, Martínez L, Urbiztondo L. Knowledge, attitude and beliefs of the primary care staff about anti-influenza vaccine and vaccination [in Spanish]. Vacunas 2005; 6 (2): 46–50

    Article  Google Scholar 

  30. Das Gupta R, Guest JF. A model to estimate the cost benefit of an occupational vaccination programme for influenza with Influvac® in the UK. Pharmacoeconomics 2002; 20 (7): 475–484

    Article  Google Scholar 

  31. De Mateo S. The importance of surveillance to control and to prevent influenza [in Spanish]. Vacunas 2002; 3 Suppl. 1: 9–13

    Google Scholar 

  32. Salleras L, Domínguez A. Health and economic impact of an anti-influenza vaccination [in Spanish]. Vacunas 2002; 3 Suppl. 1: 38–46

    Google Scholar 

  33. García MA, Figueroa Y. Evaluation of an anti-influenza vaccination program in a labour setting [in Spanish]. MAPFRE Medicina 2001; 12 (1): 49–53

    Google Scholar 

  34. Nichol KL. Cost-benefit analysis of a strategy to vaccinate healthy working adults against influenza. Arch Intern Med 2001; 161 (5): 749–759

    Article  PubMed  CAS  Google Scholar 

  35. Public Health Directorate. Influenza [in Spanish]. Ministerio de Sanidad y Consumo; 2004 [online]. Available from URL: http://www.msc.es [Accessed 2007 Nov 1]

    Google Scholar 

  36. Conesa A, Vilardell L, Muñoz R, et al. Analysis and classification of hospital emergencies through Ambulatory Patient Groups [in Spanish]. Gac Sanit 2003; 17 (6): 447–452

    Article  PubMed  CAS  Google Scholar 

  37. Pradas R, Antoñanzas F, Zoellner Y. Economic evaluation of anti-influenza vaccination by the firm medical services: a health perspective [in Spanish]. Pharmacoeconomics 2005; 2 (2): 55–63

    Google Scholar 

  38. Campins M, Farjas P, González D. Pharmacoeconomic model of anti-influenza vaccination in population aged over 64 years [in Spanish]. Vacunas 2004; 4 Suppl. 1: 35–41

    Google Scholar 

  39. General Council of Pharmaceutical Official Association. Madrid: Base de datos del Medicamento, 2005

  40. Royal Decree 1605/1980, of 31st of July, on the premium rates for unemployment, social security and salary fund, and review of the copayments for some drags [in Spanish]. Madrid: Official Bulletin of the State, number 186, 1980 Aug 4

  41. Resolution, 2004 Aug 2, on the tarrifs for health services provided in La Rioja [in Spanish]. La Rioja: Official Bulletin of La Rioja, number 89, 2004 Aug 5

  42. Database of unitary cost (CD Rom version) [in Spanish]. Barcelona: Soikos, 2004

  43. Brisson M, Edmunds WJ. Economic evaluation of vaccination programs: the impact of herd-immunity. Med Decis Making 2003; 23 (1): 76–82

    Article  PubMed  CAS  Google Scholar 

  44. Trotter CL, Edmunds WJ. Reassessing the cost-effectiveness of meningococcal serogroup c conjugate (mcc) vaccines using a transmission dynamic model. Med Decis Making 2006; 26 (1): 38–47

    Article  PubMed  Google Scholar 

  45. Armstrong GL, Billah K, Rein DB, et al. The economics of routine childhood hepatitis A immunization in the United States: the impact of herd immunity. Pediatrics 2007; 119 (1): e22–e29

    Article  PubMed  Google Scholar 

  46. Haber M, Barskey A, Baughman W, et al. Herd immunity and pneumococcal conjugate vaccine: a quantitative model. Vaccine 2007; 25 (29): 5390–5398

    Article  PubMed  CAS  Google Scholar 

  47. Arrazola MP, de Juanes JR, García de Codes A. Interpandemic control of influenza [in Spanish]. Vacunas 2005; 6 (2): 56–61

    Article  Google Scholar 

  48. Godoy P. Avian influenza pandemic: a new challenge for public health [in Spanish]. Gac Sanit 2006; 20 (1): 4–8

    Article  PubMed  Google Scholar 

  49. Sandman PM, Lanard J. Avian influenza: how to inform [in Spanish]. Perspectivas de Salud: La revista de la Organizaci6n Panamericana de la Salud 2005; 10 (2): 2–9

    Google Scholar 

  50. De Mateo S, Larrauri A, Mesonero C. Influenza surveillance: new solutions to an old problem [in Spanish]. Gac Sanit 2006; 20 (1): 67–73

    Article  PubMed  Google Scholar 

  51. Ryan J, Zoellner Y, Gradl B, et al. Establishing the health economic impact of influenza vaccination within the European Union 25 countries. Vaccine 2006; 24: 6812–6822

    Article  PubMed  Google Scholar 

  52. Batalla J, Urbiztondo M, Martínez M, et al. Incidence of adverse effects associated with systematic vaccination and vaccination programmes in Catalonia [in Spanish]. Vacunas 2003; 4 (4): 127–131

    Google Scholar 

  53. Allsup S, Gosney M, Haycox A, et al. Cost-benefit evaluation of routine influenza immunization in people 65–74 years of age. Health Tech Assess 2003; 7 (24): 1–65

    Google Scholar 

  54. Muennig PA, Khan K. Cost-effectiveness of vaccination versus treatment of influenza in healthy adolescents and adults. Clin Infect Dis 2001; 33 (11): 1879–1885

    Article  PubMed  CAS  Google Scholar 

  55. Martín JM. Analysis of a economic model about a populational anti-influenza vaccination strategy in healthy employees [in Spanish]. Rev Esp Salud Ptiblica 2006; 80 (3): 219–231

    Article  Google Scholar 

Download references

Acknowledgements

Editorial assistance was provided by Dr Peter R. Turner of t-SciMed (Reus, Spain). A previous version of the static model included in this text was developed with the support of a grant received from Solvay Pharma to study the efficiency of influenza vaccination. This current work was partially supported by a grant from the Riojan Regional Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Antoñanzas-Villar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradas-Velasco, R., Antoñanzas-Villar, F. & Martínez-Zárate, M.P. Dynamic Modelling of Infectious Diseases. Pharmacoeconomics 26, 45–56 (2008). https://doi.org/10.2165/00019053-200826010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00019053-200826010-00005

Keywords

Navigation