Skip to main content
Log in

HER2-Positive Breast Cancer

Incidence, Prognosis, and Treatment Options

  • Review Article
  • Published:
American Journal of Cancer

Abstract

Breast cancer is a leading cause of malignancy-related death in women. The prognosis for patients with breast cancer is determined by well established pathologic features associated with poor outcome such as histological grade, tumor size, and node involvement. The proto-oncogene HER2/neu or its protein receptor HER2 is amplified/overexpressed in nearly 25–30% of breast tumors. It is now recognized that breast tumors that overexpress the HER2 receptor are associated with poor prognosis and outcome. The discovery of monoclonal antibodies targeted against the transmembrane protein p185HER2/neu of HER2/neu represents a new tool for the treatment of breast cancer patients with tumors that overexpress this receptor. Trastuzumab is a recombinant humanized monoclonal antibody against the HER2 receptor that has been shown to be very active in both preclinical and clinical trials. In metastatic disease, the addition of trastuzumab to current chemotherapy has proven to be beneficial compared with chemotherapy alone. Clinical trials with different trastuzumab combination chemotherapies in metastatic settings are ongoing. In addition, trastuzumab therapy is now being tested beyond advanced disease; several trials in America and Europe are designed to add trastuzumab to adjuvant chemotherapy for patients with early nonmetastatic breast cancer. The efficacy and safety of trastuzumab in clinical trials are reviewed in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Table III
Table IV
Fig. 2

Similar content being viewed by others

References

  1. Greenlee RT, Hill-Harmon MB, Murray T, et al. Cancer statistic, 2001. CA Cancer J Clin 2001; 51: 15–36

    Article  PubMed  CAS  Google Scholar 

  2. Herderson IC. Chemotherapy for metastatic disease. In: Harris JR, Hellman S, Henderson IC, et al., editors. Breast diseases. Philadelphia (PA): J.B. Lippincott Company, 1991: 604–65

    Google Scholar 

  3. Vogel Cl, Azevedo S, Hilsenbeck S, et al. Survival after first recurrence of breast cancer: the Miami experience. Cancer 1992; 70: 129–35

    Article  PubMed  CAS  Google Scholar 

  4. Padhy LC, Shih C, Cowing D, et al. Identification of a phosphoprotein specifically induced by the transformation DNA of rat neuroblatomas. Cell 1982; 28: 865–71

    Article  PubMed  CAS  Google Scholar 

  5. Shih C, Padhy LC, Murray M, et al. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 1981; 290: 261–4

    Article  PubMed  CAS  Google Scholar 

  6. Stern DF, Heffernan PA, Weinberg RA. pl85, a product of the neu proto-oncogen is a receptor-like protein associated with tyrosine kinase activity. Mol Cell Biol 1986; 6: 1729–40

    PubMed  CAS  Google Scholar 

  7. Coussens L, Yang-Feng TL, Liao Y-C, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogen. Science 1985; 230: 1132–9

    Article  PubMed  CAS  Google Scholar 

  8. Alimandi M, Romano A, Curia MC, et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 1995; 10: 1813–21

    PubMed  CAS  Google Scholar 

  9. Mansour SJ, Matteu WT, Hermann AS, et al. Transformation of mammalians cells by constitutively active MAP kinase. Science 1994; 265: 966–70

    Article  PubMed  CAS  Google Scholar 

  10. Carraway KL, Soltoff SP, Diamonti AJ, et al. Heregulin stimulates mitogenesis and phosphatidylinositol 3-kinase in mouse fibroblasts transfected with erbB2/neu and erbB3. J Biol Chem 1995; 270: 7111–6

    Article  PubMed  CAS  Google Scholar 

  11. Fincham V, Frame M, Haefner B, et al. Functions of the v-Src protein tyrosine kinase. Cell Biol Int 1994; 18: 337–44

    Article  PubMed  CAS  Google Scholar 

  12. Jove R, Hanafusa H. Cell transformation by the viral src oncogene. Ann Rev Cell Biol 1987; 3: 31–56

    Article  PubMed  CAS  Google Scholar 

  13. Muthuswamy SK, Siegel PM, Dankort DL, et al. Mammary tumors expressing the neu proto-oncogen posses elevated c-Src tyrosine kinase activity. Mol Cell Biol 1994; 14: 735–43

    PubMed  CAS  Google Scholar 

  14. Xie Y, Li K, Hung MC. Tyrosine phosphorylation of Shc proteins and formation of Shc/Grb2 complex correlate to the transformation of NIH3T3 cells mediated by the point-mutation activated neu. Oncogene 1995; 10: 2409–13

    PubMed  CAS  Google Scholar 

  15. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the Her-2/neu oncogene. Science 1987; 235: 177–82

    Article  PubMed  CAS  Google Scholar 

  16. Hynes NE, Stern DF. The biology of erbB2/neu/HER-2 and its role in cancer. Biochem Biophys Acta 1994; 1198: 165–84

    PubMed  Google Scholar 

  17. Rubin I, Yarden Y. The basic biology of Her 2. Ann Oncol 2001; 12Suppl. 1: 3–8

    Article  Google Scholar 

  18. Hudziak RM, Lewis GD, Winget M, et al. p185HER-2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumors to tumor necrosis factor. Mol Cell Biol 1989; 9: 1165–72

    PubMed  CAS  Google Scholar 

  19. Kern JA, Torney L, Weiner D, et al. Inhibition of human lung cancer cell line growth by an anti-p185HER2 antibody. Am J Respir Cell Mol Biol 1993; 9: 448–54

    PubMed  CAS  Google Scholar 

  20. Benz CC, Scott GK, Sarup JC, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 1993; 24: 85–95

    Article  CAS  Google Scholar 

  21. Scott GK, Dodson JM, Montgomery PA, et al. p185HER2 signal transduction in breast cancer cells. J Biol Chem 1991; 266(22): 14300–5

    PubMed  CAS  Google Scholar 

  22. Lewis GD, Figari I, Fendly B, et al. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother 1993; 37: 255–63

    Article  PubMed  CAS  Google Scholar 

  23. Shepard HM, Lewis GD, Sarup JC, et al. Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J Clin Inmunol 1991; 11: 117–27

    Article  CAS  Google Scholar 

  24. Yardem Y. Agonistic antibodies stimulate the kinase encoded by the neu protooncogene in living cells but the oncogenic mutant is constitutively active. Proc Natl Acad Sci U S A 1990; 87: 2569–73

    Article  Google Scholar 

  25. Park JW, Stagg R, Lewis GD, et al. Anti-p185Her2 monoclonal antibodies: biological properties and potential for immunotherapy. Cancer Treatment Res 1992; 61: 193–211

    Article  CAS  Google Scholar 

  26. Maier LA, Xu FJ, Hester S, et al. Requirements for the internalization of a murine monoclonal antibody directed against the Her-2/neu gene product c-erbB-2. Cancer Res 1991; 51: 5361–9

    PubMed  CAS  Google Scholar 

  27. Klapper LN, Vaisman N, Hurwitz E, et al. A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/Her2 blocks crosstalk with growth factor receptors. Oncogene 1997; 14: 2099–109

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez GC, Boente MP, Berchuck A, et al. The effect of antibodies and inmunotoxins reactive with Her2/neu on growth of ovarian and breast cancer cell lines. Am J Obstet Gynecol 1993; 168: 228–32

    PubMed  CAS  Google Scholar 

  29. Pietras RJ, Fendly BM, Chazin VR, et al. Antibody to Her2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene 1994; 9: 1829–38

    PubMed  CAS  Google Scholar 

  30. Arteaga CL, Winnier AR, Poirier MC, et al. p185c-erbB-2 signal enhances cisplatin-induced cytotoxicity in human breast carcinoma cells: association between an oncogenic receptor tyrosine kinase and drug-induced DNA repair. Cancer Res 1994; 54: 3758–65

    PubMed  CAS  Google Scholar 

  31. Carter P, Gorman CD, Presta L, et al. Humanization of an anti-p185HER-2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 1992; 89: 4285–9

    Article  PubMed  CAS  Google Scholar 

  32. Baly DL, Wirth CM, Allison DA, et al. Development and characterization of a rhuMAbHer2 antibody assay for clinical evaluation of cytotoxic potency [abstract 181]. Proc Am Assoc Cancer Res 1997; 38: 27

    Google Scholar 

  33. Pegram MD, Baly D, Wirth C, et al. Antibody dependent cell-mediated cytotoxicity in breast cancer patients in phase II clinical trials of a humanized anti-HER2 antibody [abstract 4044]. Proc Am Assoc Cancer Res 1997; 38: 602

    Google Scholar 

  34. Fendly BM, Winget M, Hudziak RM, et al. Characterization of murine monoclonal antibodies reactive to either the human growth factor receptor of Her2/neu gene product. Cancer Res 1990; 50: 1550–8

    PubMed  CAS  Google Scholar 

  35. Hancock MC, Langton BC, Chan T, et al. A monoclonal antibody against the c-erbB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res 1991; 51: 4575–80

    PubMed  CAS  Google Scholar 

  36. Harwerth IM, Wels W, Schlegel J, et al. Monoclonal antibodies directed to the erbB-2 receptor inhibit in vivo tumor cell growth. Br J Cancer 1993; 68: 1140–5

    Article  PubMed  CAS  Google Scholar 

  37. Mckenzie SJ, Marks PJ, Lam T, et al. Generation and characterization of monoclonal antibodies specific for the human neu oncogene product, p185. Oncogene 1989; 4: 543–8

    PubMed  CAS  Google Scholar 

  38. Sarup JC, Johnson RM, King KL, et al. Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor functions and inhibits tumor cell growth. Growth Regul 1991; 1: 72–82

    PubMed  CAS  Google Scholar 

  39. Stancovski I, Kurwitz E, Leitner O, et al. Mechanistic aspects of the opposing effects of monoclonal antibodies to the erbB2 receptor on tumor growth. Proc Natl Acad Sci U S A 1991; 88: 8691–5

    Article  PubMed  CAS  Google Scholar 

  40. Pegram M, Hsu S, Lewis G, et al. Inhibitory effects of combination of Her-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 1999; 18: 2241–51

    Article  PubMed  CAS  Google Scholar 

  41. Pietras RJ, Pegram MD, Finn RS, et al. Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene 1998; 17: 2235–49

    Article  PubMed  CAS  Google Scholar 

  42. Baselga J, Norton L, Albaneil J, et al. Recombinant humanized anti-HER2 antibody (Herceptin™) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 1998; 58: 2825–31

    PubMed  CAS  Google Scholar 

  43. Shak S. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer: for the Herceptin® Multinational Investigator Study Group. Semin Oncol 1999; 26(12 Suppl.): 71–7

    PubMed  CAS  Google Scholar 

  44. Baselga J, Tripathy D, Mendelshon J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14: 737–44

    PubMed  CAS  Google Scholar 

  45. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639–48

    PubMed  CAS  Google Scholar 

  46. Vogel C, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single-agent in first line treatment of Her2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20: 719–26

    Article  PubMed  CAS  Google Scholar 

  47. Pegram MD, Lipton A, Hayes DF, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 1998; 16: 2659–71

    PubMed  CAS  Google Scholar 

  48. Seidman AD, Fornier MN, Esteva FJ, et al. Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 inmunophenotype and gene amplification. J Clin Oncol 2001; 19: 2587–95

    PubMed  CAS  Google Scholar 

  49. Seidman AD, Hudis CA, Albanel J, et al. Dose-dense therapy with weekly 1-hour paclitaxel infusions in the treatment of metastatic breast cancer. J Clin Oncol 1998; 16: 3353–61

    PubMed  CAS  Google Scholar 

  50. Burstein HJ, Kuter I, Campos SM, et al. Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 2001; 19: 2722–30

    PubMed  CAS  Google Scholar 

  51. Esteva FJ, Valero V, Booser D, et al. A phase II trial of weekly docetaxel and trastuzumab for patients with HER-2 overexpressing (HER2+) metastatic breast cancer. J Clin Oncol 2002; 20: 1800–8

    Article  PubMed  CAS  Google Scholar 

  52. Uber KA, Nicholson BP, Thor AD, et al. A phase II trial of weekly docetaxel and Herceptin as first- or second-line treatment in HER2 over-expressing metastatic breast cancer [abstract 1949]. Pro Am Soc Clin Oncol 2001; 20: 50b

    Google Scholar 

  53. Slamon DJ, Ravindranath P, Northfelt R, et al. Phase II pilot study of Herceptin® combined with taxotere and carboplatin (TCH) in metastatic breast cancer (MBC) patients overexpressing the HER2-neu proto-oncogene: a pilot study of the UCLA Network [abstract 193]. Pro Am Soc Clin Oncol 2001; 20: 49a

    Google Scholar 

  54. Meden H, Beneke A, Hesse T, et al. Weekly intravenous recombinant humanized anti-Her2 monoclonal antibody (trastuzumab) plus docetaxel in patients with metastatic breast cancer: a pilot study [abstract 1987]. Pro Am Soc Clin Oncol 2001; 20: 60b

    Google Scholar 

  55. Pienkowski T, Fumoleau P, Eirmann W, et al. Taxotere, cisplatin and Herceptin (TCH) in first-line HER2 positive metastatic breast cancer (MBC) patients: a phase II pilot study by the breast cancer international research group (BCIRG 101) [abstract 2030]. Pro Am Soc Clin Oncol 2001; 20: 70b

    Google Scholar 

  56. Kuzur ME, Albain KS, Huntington MO, et al. A phase II trial of docetaxel and Herceptin in metastatic breast cancer patients overexpressing Her-2 [abstract]. Proc Am Soc Clin Oncol 2000; 19: 512a

    Google Scholar 

  57. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overex-presses HER2. N Engl J Med 2001; 344: 783–92

    Article  PubMed  CAS  Google Scholar 

  58. Seidman AD, Hudis C, Keefe D, et al. Characterization of cardiac dysfunction in the Herceptin clinical trials experience. J Clin Oncol 2002; 20: 1215–21

    Article  PubMed  CAS  Google Scholar 

  59. Tripathy D, Slamon D, Leyland-Jones B, et al. Treatment beyond progression in the Herceptin pivotal combination chemotherapy trial [abstract 25]. Breast Cancer Res Treat 2000; 64: 32

    Google Scholar 

  60. Gelmon K, Arnold A, Verma S, et al. Pharmacokinetics and safety of trastuzumab (Herceptin®) when administered every three weeks to women with metastatic breast cancer [abstract 271]. Pro Am Soc Clin Oncol 2001; 20: 69a

    Google Scholar 

  61. Nabholtz JM, Slamon D. New adjuvant strategies for breast cancer: meeting the challenge of integrating chemotherapy and trastuzumab (Herceptin). Semin Oncol 2001; 28(3 Suppl.): 1–12

    Article  PubMed  CAS  Google Scholar 

  62. Piccart M. Closing remarks and treatment guidelines. Eur J Cancer 2001; 37: 30–3

    Article  PubMed  Google Scholar 

  63. Mass RD, Sanders C, Charlene K, et al. The concordance between the clinical trials assays (CTA) and fluorescence in situ hybridization (FISH) in the Herceptin® pivotal trials [abstract]. Pro Am Soc Clin Oncol 2000; 19: 291a

    Google Scholar 

Download references

Acknowledgements

I would like to thank Hernan Cortes Funes MD, Carlos Cordon PhD, and Astra Zemeca for their help and support, which enabled me to spend three months at Memorial Sloan Kettering Cancer Center. Special thanks to Andrew D. Seidman for giving me the opportunity to co-author this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura G. Estévez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estévez, L.G., Seidman, A.D. HER2-Positive Breast Cancer. Am J Cancer 2, 169–179 (2003). https://doi.org/10.2165/00024669-200302030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200302030-00002

Keywords

Navigation