Skip to main content
Log in

Nucleoside and Nucleotide Reverse Transcriptase Inhibitors in Children

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

By the end of 2006, approximately 2.3 million children worldwide were living with HIV infection, representing about 15% of all HIV-infected individuals but only 5–7% of the total population of treated patients worldwide. Despite a general increase in the use of antiretroviral therapy (ART) in resource-limited settings, appropriate care and ART remain inaccessible for most of the world’s HIV-infected children. ART of children is challenging because of a general lack of paediatric formulations (including tablets in paediatric strengths), limited options of drugs available for children (some have been approved only for use in adults), different viral and immunological responses, dependency on caregivers for administration of the therapy, and specific issues of toxicity in long-term therapy related to maturation and development. As in adults, nucleoside reverse transcriptase inhibitors (NRTIs) are a key component of any ART schedule in children, being the recommended ‘backbone’ treatment in US, European and WHO guidelines, and, indeed, NRTIs have been extensively studied in children. NRTIs are the class of antiretroviral drugs that have more drugs licensed for paediatric use and more paediatric formulations.

Generally, the dual NRTI backbone treatment of combination with a non-NRTI (NNRTI) or protease inhibitor (PI) should comprise a cytidine analogue (lamivudine, emtricitabine) and a thymidine analogue (stavudine, zidovudine), guanosine analogue (i.e. abacavir), or nucleotide RTI (NtRTI; i.e. tenofovir). European and US guidelines recommend the use of triple NRTI therapy (abacavir/lamivudine/zidovudine) in children with anticipated poor adherence to other treatment regimens because of tablet burden.

In conclusion, while use of ART in children needs to be dramatically increased, selecting and administering the best drug combination for children is still limited by a lack of paediatric formulations and knowledge of drug metabolism, safety and efficacy in children. NRTIs are already a key component of paediatric ART, but fixed-dose combinations and specific research in children are needed to optimise their use. In this article we review the available information to facilitate selection of the best NRTI for backbone treatment in combination ART for HIV-infected children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Fig. 1
Table V
Table VI

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. UNAIDS/WHO AIDS epidemic update: December 2006 [online]. Available from URL: http://www.unaids.org/en/HIV_data/epi2006/default.asp [Accessed 2007 Feb 13]

  2. Progress on global access to HIV antiretroviral therapy: a report on ‘3 by 5’ and beyond [online]. Available from URL: http://www.who.int/hiv/progreport2006_summary_en.pdf [Accessed 2007 Feb 14]

  3. Palumbo PE, Raskino C, Fiscus S, et al. Predictive value of quantitative plasma HIV RNA and CD4+ lymphocyte count in HIV-infected infants and children. JAMA 1998 Mar 11; 279(10): 756–61

    Article  PubMed  CAS  Google Scholar 

  4. de Martino M, Tovo PA, Galli L, et al. Puberty in perinatal HIV-1 infection: a multicentre longitudinal study of 212 children. AIDS 2001 Aug 17; 15(12): 1527–34

    Article  PubMed  Google Scholar 

  5. Gortmaker SL, Hughes M, Cervia J, et al. Effect of combination therapy including protease inhibitors on mortality among children and adolescents infected with HIV-1. N Engl J Med 2001 Nov 22; 345(21): 1522–8

    Article  PubMed  CAS  Google Scholar 

  6. Palella Jr FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 1998 Mar 26; 338(13): 853–60

    Article  PubMed  Google Scholar 

  7. Antiretroviral therapy of HIV infection in infants and children in resource-limited settings: towards universal access. Recommendations for a public health approach [online]. Available from URL: http://www.who.int/hiv/pub/guidelines/art/en/index.htm [Accessed 2007 Feb 13]

  8. Sharland M, Gibb D, Giaquinto C, et al. A PENTA analysis. Eur J Pediatr 2000; 159(9): 649–56

    Article  PubMed  CAS  Google Scholar 

  9. Zhang L, Ramratnam B, Tenner-Racz K, et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med 1999 May 27; 340(21): 1605–13

    Article  PubMed  CAS  Google Scholar 

  10. Lewis LL, Venzon D, Church J, et al. Lamivudine in children with human immunodeficiency virus infection: a phase I/II study. The National Cancer Institute Pediatric Branch-Human Immunodeficiency Virus Working Group. J Infect Dis 1996 Jul; 174(1): 16–25

    Article  PubMed  CAS  Google Scholar 

  11. Englund JA, Baker CJ, Raskino C, et al. Zidovudine, didanosine, or both as the initial treatment for symptomatic HIV-infected children IDS Clinical Group (ACTG) Study 152 Team. N Engl J Med 1997 Jun 12; 336(24): 1704–12

    Article  PubMed  CAS  Google Scholar 

  12. McKinney Jr RE, Johnson BM, Stanley K, et al. A randomized study of combined zidovudine-lamivudine versus didanosine monotherapy in children with symptomatic therapy-naive HIV-1 infection. The Pediatric AIDS Clinical Trials Group Protocol 300 Study Team. J Pediatr 1998 Oct; 133(4): 500–8

    Article  PubMed  Google Scholar 

  13. Paediatric European Network for Treatment of AIDS. A randomized double-blind trial of the addition of lamivudine or matching placebo to current nucleoside analogue reverse transcriptase inhibitor therapy in HIV-infected children: the PENTA-4 trial. AIDS 1998 Oct 1; 12(14): F151–60

    Google Scholar 

  14. Kline MW, Van Dyke RB, Lindsey JC, et al. A randomized comparative trial of stavudine (d4T) versus zidovudine (ZDV, AZT) in children with human immunodeficiency virus infection. AIDS Clinical Trial Group 240 Team. Pediatrics 1998 Feb; 101(2): 214–20

    CAS  Google Scholar 

  15. Stretcher BN. Pharmacokinetic optimisation of antiretroviral therapy in patients with HIV infection. Clin Pharmacokinet 1995 Jul; 29(1): 46–65

    Article  PubMed  CAS  Google Scholar 

  16. Gao WY, Shirasaka T, Johns DG, et al. Differential phosphorylation of azidothymidine, dideoxycytidine, and dideoxyinosine in resting and activated peripheral blood mononuclear cells. J Clin Invest 1993 May; 91(5): 2326–33

    Article  PubMed  CAS  Google Scholar 

  17. Ingrand D, Weber J, Boucher CA, et al. Phase I/II study of 3TC (lamivudine) in HIV-positive, asymptomatic or mild AIDS-related complex patients: sustained reduction in viral markers. The Lamivudine European HIV Working Group. AIDS 1995 Dec; 9(12): 1323–9

    Article  PubMed  CAS  Google Scholar 

  18. Handforth J, Sharland M. Triple nucleoside reverse transcriptase inhibitor therapy in children. Paediatr Drugs 2004; 6(3): 1–14

    Google Scholar 

  19. Concorde: MRC/ANRS randomised double-blind controlled trial of immediate and deferred zidovudine in symptom-free HIV infection. Concorde Coordinating Committee. Lancet 1994 Apr 9; 343(8902): 871–81

    Article  Google Scholar 

  20. Connor EM, Sperling RS, Gelber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatrics AIDS Clinical Trial Group Protocol 076 Study Group. N Engl J Med 1994 Nov 3; 331(18): 1173–80

    Article  PubMed  CAS  Google Scholar 

  21. Wintergerst U, Rolinski B, Vocks-Hauck M, et al. Pharmacokinetics of orally administered zidovudine in HIV-infected children and adults. Infection 1995 Nov-Dec; 23(6): 344–8

    Article  PubMed  CAS  Google Scholar 

  22. Pizzo PA, Eddy J, Falloon J, et al. Effect of continuous intravenous infusion of zidovudine (AZT) in children with symptomatic HIV infection. N Engl J Med 1988; 319(14): 889–96

    Article  PubMed  CAS  Google Scholar 

  23. Mueller BU, Pizzo PA, Farley M, et al. Pharmacokinetic evaluation of the combination of zidovudine and didanosine in children with human immunodeficiency virus infection. J Pediatr 1994; 125(1): 142–6

    Article  PubMed  CAS  Google Scholar 

  24. Bakshi SS, Britto P, Capparelli E, et al. Evaluation of pharmacokinetics, safety, tolerance, and activity of combination of zalcitabine and zidovudine in stable, zidovudine-treated pediatric patients with human immunodeficiency virus infection. AIDS Clinical Trials Group Protocol 190 Team. J Infect Dis 1997; 175(5): 1039–50

    Article  PubMed  CAS  Google Scholar 

  25. Mirochnick M, Capparelli E, Connor J. Pharmacokinetics of zidovudine in infants: a population analysis across studies. Clin Pharmacol Ther 1999 Jul; 66(1): 16–24

    Article  PubMed  CAS  Google Scholar 

  26. Mirochnick M, Capparelli E, Dankner W, et al. Zidovudine pharmacokinetics in premature infants exposed to human immunodeficiency virus. Antimicrob Agents Chemother 1998; 42(4): 808–12

    PubMed  CAS  Google Scholar 

  27. The Working Group on Antiretroviral Therapy and Medical Management of HIV-Infected Children. Guidelines for the use of antiretroviral agents in pediatric HIV infection, October 26, 2006 [online]. Available from URL: http://www.aidsinfo. nih.gov/ContentFiles/PediatricGuidelines.pdf [Accessed 2007 Feb 14]

  28. Capparelli EV, Letendre SL, Ellis RJ, et al. Population pharmacokinetics of abacavir in plasma and cerebrospinal fluid. Antimicrob Agents Chemother 2005 Jun; 49(6): 2504–6

    Article  PubMed  CAS  Google Scholar 

  29. Mueller BU, Lewis LL, Yuen GJ,et al. Serum and cerebrospinal fluid pharmacokinetics of intravenous and oral lamivudine in human immunodeficiency virus-infected children. Antimicrob Agents Chemother 1998 Dec; 42(12): 3187–92

    PubMed  CAS  Google Scholar 

  30. Fraaij PLA, van Kampen JA, Burger D, et al. Pharmacokinetics of antiviral therapy in HIV-1 infected children. Clin Pharmacokinet 2005; 44(9): 935–56

    Article  PubMed  CAS  Google Scholar 

  31. McKinney Jr RE, Mahal MA, Connor EM, et al. A multicenter trial of oral zidovudine in children with advanced human immunodeficiency virus disease. The protocol 043 Study Group. N Engl J Med 1991 Apr 11; 324(15): 1018–25

    Article  PubMed  Google Scholar 

  32. Sharland M, Blanche S, Castelli G, et al. PENTA guidelines for the use of antiretroviral therapy, 2004. HIV Med 2004 Jul; 5Suppl. 2: 61–86

    Article  PubMed  Google Scholar 

  33. King JR, Nachman S, Yogev R, et al. Single-dose pharmacokinetics of enteric-coated didanosine in HIV-infected children. Antivir Ther 2002 Dec; 7(4): 267–70

    PubMed  CAS  Google Scholar 

  34. Stevens RC, Rodman JH, Yong FH, et al. Effect of food and pharmacokinetic variability on didanosine systemic exposure in HIV-infected children. Pediatric AIDS Clinical Trials Group Protocol 144 Study Team. AIDS Res Hum Retroviruses 2000 Mar 20; 16(5): 415–21

    Article  PubMed  CAS  Google Scholar 

  35. Abreu T, Plaisance K, Rexroad V, et al. Bioavailability of onceand twice-daily regimens of didanosine in human immunodeficiency virus-infected children. Antimicrob Agents Chemother 2000 May; 44(5): 1375–6

    Article  PubMed  CAS  Google Scholar 

  36. Balis FM, Pizzo PA, Butler KM, et al. Clinical pharmacology of 2′,3′-dideoxyinosine in human immunodeficiency virus-infected children. J Infect Dis 1992 Jan; 165(1): 99–104

    Article  PubMed  CAS  Google Scholar 

  37. Whitcup SM, Butler KM, Caruso R, et al. Retinal toxicity in human immunodeficiency virus-infected children treated with 2′,3′-dideoxyinosine. Am J Ophthalmol 1992 Jan 15; 113(1): 1–7

    PubMed  CAS  Google Scholar 

  38. Butler KM, Venzon D, Henry N, et al. Pancreatitis in human immunodeficiency virus-infected children receiving dideoxyinosine. Pediatrics 1993 Apr; 91(4): 747–51

    PubMed  CAS  Google Scholar 

  39. M.D. alert®. Dear health care professional [online]. Available from URL: http://www.fda.gov/cder/drug/shortages/Roche_HIVID_MDLetter.pdf [Accessed 2007 Feb 15]

  40. Chadwick EG, Nazareno LA, Nieuwenhuis TJ, et al. Phase I evaluation of zalcitabine administered to human immunodeficiency virus-infected children. J Infect Dis 1995 Dec; 172(6): 1475–9

    Article  PubMed  CAS  Google Scholar 

  41. Bakshi SS, Britto P, Capparelli E, et al. Evaluation of pharmacokinetics, safety, tolerance, and activity of combination of zalcitabine and zidovudine in stable, zidovudine-treated pediatric patients with human immunodeficiency virus infection. AIDS Clinical Trials Group Protocol 190 Team. J Infect Dis 1997 May; 175(5): 1039–50

    Article  PubMed  CAS  Google Scholar 

  42. Viani RM, Smith IL, Spector SA. Human immunodeficiency virus type 1 phenotypes in children with advanced disease treated with long-term zalcitabine. J Infect Dis 1998 Mar; 177(3): 565–70

    Article  PubMed  CAS  Google Scholar 

  43. Gibb DM, Carrière I, Giaquinto C, et al. The safety and tolerability of zidovudine (ZDV) and zalcitabine (ddC) in children with symptomatic HIV infection: PENTA 3 [abstract]. VIth European Conference on Clinical Aspects and Treatment of HIV-Infection; 1997 Oct 1–15; Hamburg

  44. B Gazzard, on behalf of the BHIVA Writing Committee. British HIV Association (BHIVA) guidelines for the treatment of HIV-infected adults with antiretroviral therapy (2006). HIV Medicine 2006; 7: 487–503

    Article  Google Scholar 

  45. King JR, Kimberlin DW, Aldrovandi GM, et al. Antiretroviral pharmacokinetics in the paediatric population: a review. Clin Pharmacokinet 2002; 41(14): 1115–33

    Article  PubMed  CAS  Google Scholar 

  46. Sokal EM, Roberts EA, Mieli-Vergani G, et al. A dose ranging study of the pharmacokinetics, safety, and preliminary efficacy of lamivudine in children and adolescents with chronic hepatitis B. Antimicrob Agents Chemother 2000 Mar; 44(3): 590–7

    Article  PubMed  CAS  Google Scholar 

  47. Moodley D, Pillay K, Naidoo K, et al. Pharmacokinetics of zidovudine and lamivudine in neonates following co-administration of oral doses every 12 hours. J Clin Pharmacol 2001 Jul; 41(7): 732–41

    Article  PubMed  CAS  Google Scholar 

  48. Bergshoeff A, Burger D, Verweij C, et al. Pharmacokinetics of once versus twice daily lamivudine and abacavir: simplification of combination treatment in HIV-1 infected children. Antivir Ther 2005; 10(2): 239–46

    PubMed  CAS  Google Scholar 

  49. Kakuda TN. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther 2000; 22(6): 685–708

    Article  PubMed  CAS  Google Scholar 

  50. Kaul S, Kline MW, Church JA, et al. Determination of dosing guidelines for stavudine (2′,3′-didehydro-3′-deoxythymidine) in children with human immunodeficiency virus infection. Antimicrob Agents Chemother 2001 Mar; 45(3): 758–63

    Article  PubMed  CAS  Google Scholar 

  51. Kline MW, Dunkle LM, Church JA, et al. A phase I/II evaluation of stavudine (d4T) children with human immunodeficiency virus infection. Pediatrics 1995 Aug; 96 (2 Pt 1): 247–52

    PubMed  CAS  Google Scholar 

  52. Kline MW, Fletcher CV, Harris AT, et al. A pilot study of combination therapy with indinavir, stavudine (d4T), and didanosine (ddI) in children infected with the human immunodeficiency virus. J Pediatr 1998 Mar; 132 (3 Pt 1): 543–6

    Article  PubMed  CAS  Google Scholar 

  53. Kline MW, Fletcher CV, Federici ME, et al. Combination therapy with stavudine and didanosine in children with advanced human immunodeficiency virus infection: pharmacokinetic properties, safety, and immunologic and virologic effects. Pediatrics 1996 Jun; 97 (6 Pt 1): 886–90

    PubMed  CAS  Google Scholar 

  54. Joly V, Flandre P, Meiffredy V,et al. Increased risk of lipoatrophy under stavudine in HIV-1-infected patients: results of a substudy from a comparative trial. AIDS 2002 Dec 6. 16(18): 2447–54

    Article  PubMed  CAS  Google Scholar 

  55. European Paediatric Lipodystrophy Group. Antiretroviral therapy, fat redistribution and hyperlipidaemia in HIV-infected children in Europe. AIDS 2004 Jul 2; 18(10): 1443–51

    Article  Google Scholar 

  56. Scherpbier HJ, Bekker V, van Leth F, et al. Long-term experience with combination antiretroviral therapy that contains nelfinavir for up to 7 years in a pediatrie cohort. Pediatrics 2006 Mar; 117(3): e528–36

    Article  PubMed  Google Scholar 

  57. Saez-Llorens X, Nelson Jr RP, Emmanuel P, et al. A randomized, double-blind study of triple nucleoside therapy of abacavir, lamivudine, and zidovudine versus lamivudine and zidovudine in previously treated human immunodeficiency virus type 1-infected children. The CNAA3006 Study Team. Pediatrics 2001 Jan; 107(1): E4

    Article  PubMed  CAS  Google Scholar 

  58. Daluge SM, Good SS, Faletto MB, et al. 1592U89, a novel carbocyclic nucleoside analog with potent, selective antihuman immunodeficiency virus activity. Antimicrob Agents Chemother 1997 May; 41(5): 1082–93

    PubMed  CAS  Google Scholar 

  59. Paediatric European Network for Treatment of AIDS (PENTA). Lamivudine/abacavir maintains virological superiority over zidovudine/lamivudine and zidovudine/abacavir beyond 5 years in children. AIDS 2007; 21: 947–55

    Article  CAS  Google Scholar 

  60. Fatal hypersensitivity reactions, respiratory symptoms, and Ziagen® (abacavir sulfate) [online]. Available from URL: http://www.fda.gov/medwAtch/sAfety/2000/ziagen.htm [Accessed 2007 Feb 14]

  61. Hetherington S, McGuirk S, Powell G, et al. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin Ther 2001 Oct; 23(10): 1603–14

    Article  PubMed  CAS  Google Scholar 

  62. Hughes W, McDowell JA, Shenep J, et al. Safety and singledose pharmacokinetics of abacavir (1592U89) in human immunodeficiency virus type 1-infected children. Antimicrobial Agents Chemother 1999 Mar; 43(3): 609–15

    CAS  Google Scholar 

  63. Kline MW, Blanchard S, Fletcher CV, et al. A phase I study of abacavir (1592U89) alone and in combination with other antiretroviral agents in infants and children with human immunodeficiency virus infection. AIDS Clinical Trials Group 330 Team. Pediatrics 1999 Apr; 103(4): e47

    Article  PubMed  CAS  Google Scholar 

  64. Birkus G, Hitchcock MJ, Cihlar T. Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2002 Mar; 46(3): 716–23

    Article  PubMed  CAS  Google Scholar 

  65. Hewitt RG. Abacavir hypersensitivity reaction. Clin Infect Dis 2002 Apr 15; 34(8): 1137–42

    Article  PubMed  CAS  Google Scholar 

  66. Hetherington S, Hughes AR, Mosteller M, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002 Mar 30; 359(9312): 1121–2

    Article  PubMed  CAS  Google Scholar 

  67. Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002 Mar 2; 359(9308): 727–32

    Article  PubMed  CAS  Google Scholar 

  68. Hughes DA, Vilar FJ, Ward CC, et al. Cost-effectiveness analysis of HLA B*5701 genotyping in preventing abacavir hypersensitivity. Pharmacogenetics 2004 Jun; 14(6): 335–42

    Article  PubMed  Google Scholar 

  69. Symonds W, Cutrell A, Edwards M, et al. Risk factor analysis of hypersensitivity reactions to abacavir. Clin Ther 2002 Apr; 24(4): 565–73

    Article  PubMed  CAS  Google Scholar 

  70. Gibb DM, Melvin A, Compagnucci A, et al. Choice of first-line ART regimen in PENPACT-1: a randomized trial of combination antiretroviral regimens and treatment switching strategies in antiretroviral naive children >30 days and <18 years of age [poster TuPeB4442]. 15th International AIDS Conference; 2004 Jul 11–16; Bangkok

  71. Moyle G. Mechanisms of HIV and nucleoside reverse transcriptase inhibitor injury to mitochondria. Antivir Ther 2005; 10Suppl. 2: M47–52

    PubMed  CAS  Google Scholar 

  72. Stekler J, Maenza J, Stevens C, et al. Abacavir hypersensitivity reaction in primary HIV infection. AIDS 2006 Jun 12; 20(9): 1269–74

    Article  PubMed  CAS  Google Scholar 

  73. Gazzard B, G Moyle, M Nelson, et al. The combination of tenofovir DF (TDF), emtricitabine (FTC) and efavirenz (EFV) has significantly greater response vs. fixed dose zidovudine/ lamivudine (CBV) and EFV in antiretroviral naive patients: a 24 week preliminary analysis [abstract no. HI 137c]. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 Oct 30–Nov 2; Washington, DC

  74. Hazra R, Balis FM, Tullio AN, et al. Single-dose and steadystate pharmacokinetics of tenofovir disoproxil fumarate in human immunodeficiency virus-infected children. Antimicrob Agents Chemother 2004 Jan; 48(1): 124–9

    Article  PubMed  CAS  Google Scholar 

  75. Kearney B, Abadi J, Rosenberg M, et al. Pharmacokinetics of tenofovir DF oral suspension in HIV-1-infected children between 2 and 8 years of age [abstract no. N935]. 11th Conference on Retroviruses and Opportunistic Infections; 2005 Feb 8–11; San Francisco (CA)

  76. Tung MY, Mandalia S, Bower M,et al. The durability of virological success of tenofovir and didanosine dosed at either 400 or 250 mg once daily. HIV Med 2005 May; 6(3): 151–4

    Article  PubMed  CAS  Google Scholar 

  77. Gafni R, Hazra R, Reynolds J, et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy: impact on bone mineral density in HIV-infected children. Pediatrics 2006 Sep; 118(3): e711–8

    Article  PubMed  Google Scholar 

  78. Hazra R, Gafni RI, Maldarelli F, et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy for paediatric HIV infection. Pediatrics 2005 Dec; 116(6): e846–54

    Article  PubMed  Google Scholar 

  79. Vigano A, Aldrovandi GM, Giacomet V, et al. Improvement in dyslipidaemia after switching stavudine to tenofovir and replacing protease inhibitors with efavirenz in HIV-infected children. Antivir Ther 2005; 10(8): 917–24

    PubMed  CAS  Google Scholar 

  80. Schinazi RF. Assessment of the relative potency of emtricitabine and lamivudine. J Acquir Immune Defic Syndr 2003 Oct 1;34(2): 243–5

    Article  PubMed  Google Scholar 

  81. Hazen R, Lanier ER. Relative anti-HIV-1 efficacy of lamivudine and emtricitabine in vitro is dependent on cell type. J Acquir Immune Defic Syndr 2003 Mar 1; 32(3): 255–8

    Article  PubMed  CAS  Google Scholar 

  82. Rousseau FS, Wakeford C, Mommeja-Marin H, et al. Prospective randomised trial of emtricitabine versus lamivudine shortterm monotherapy in human immunodeficiency virus-infected patients. J Infect Dis 2003 Dec 1; 188(11): 1652–8

    Article  PubMed  CAS  Google Scholar 

  83. Wiznia A, Violari A, Ndiweni D, et al. Once daily (QD) emtricitabine (FTC) with other antiretroviral agents (ART) in HIV-infected paediatric patients at 48 weeks [abstract no. TuPeB4431]. 15th International AIDS Conference; 2004 Jul 11–16; Bangkok

  84. McKinney R, Rodman J, Rathore M, et al. PACTG 1021: extended follow-up and pharmacokinetics for once daily emtricitabine, didanosine, and efavirenz for antiretroviral naive children and adolescents [abstract no. N.936]. 11 th Conference on Retroviruses and Opportunistic Infections; 2004 Feb 8–11; San Francisco (CA)

  85. Bang LM, Scott LJ. Emtricitabine: an antiretroviral agent for HIV infection. Drugs 2003; 63(22): 2413–24

    Article  PubMed  CAS  Google Scholar 

  86. Frampton JE, Perry CM. Emtricitabine: a review of its use in the management of HIV infection. Drugs 2005; 65(10): 1427–48

    Article  PubMed  CAS  Google Scholar 

  87. Wang LH, Wiznia AA, Rathore MH, et al. Pharmacokinetics and safety of single oral doses of emtricitabine in human immunodeficiency virus-infected children. Antimicrob Agents Chemother 2004 Jan; 48(1): 183–91

    Article  PubMed  CAS  Google Scholar 

  88. Blum MR, Ndiweni D, Chittick G, et al. Steady state pharmacokinetic evaluation of emtricitabine in neonates exposed to HIV in utero [abstract no. N568]. 13th Conference on Retroviruses and Opportunistic Infections; 2006 Feb 5–9; Denver (CO)

  89. Saez-Llorens X, Violari A, Ndiweni D, et al. Once daily emtricitabine (FTC) in HIV-infected paediatric patients with other antiretroviral agents [abstract no. 872]. 10th Conference on Retroviral and Opportunistic Infections; 2003 Feb 10–14; Boston (MA)

  90. Saag SM. Emtricitabine, a new antiretroviral agent with activity against HIV and hepatitis B virus. Clin Infect Dis 2006 Jan 1; 42(1): 126–31

    Article  PubMed  CAS  Google Scholar 

  91. WHO expert working group meeting to determine preferred ARV medicines for treating and preventing HIV infection in younger children. Geneva. Oct 23–25, 2006. Meeting report [online]. Available from URL: http://www.who.int/hiv/events/paediatricmeetingreportpdf [Accessed 2007 Feb 16]

  92. DeJesus E, Herrera G, Teofilo E, et al. Abacavir versus zidovudine combined with lamivudine and efavirenz, for the treatment of antiretroviral-naive HIV-infected adults. Clin Infect Dis 2004 Oct 1; 39(7): 1038–46

    Article  PubMed  CAS  Google Scholar 

  93. Gulick RM, Ribaudo HJ, Shikuma CM, et al. Triple-nucleoside regimens versus efavirenz-containing regimens for the initial treatment of HIV-1 infection. N Engl J Med 2004 Apr 29; 350(18): 1850–61

    Article  PubMed  CAS  Google Scholar 

  94. Squires K, Lazzarin A, Gatell JM, et al. Comparison of once daily atazanavir with efavirenz, each in combination with fixed-dose zidovudine and lamivudine, as initial therapy for patients infected with HIV. J Acquir Immune Defic Syndr 2004 Aug 15; 36(5): 1011–9

    Article  PubMed  CAS  Google Scholar 

  95. Gibb D, Barry M, Ormesher S, et al. Pharmacokinetics of zidovudine and dideoxyinosine alone and in combination in children with HIV infection. Br J Clin Pharmacol 1995 May; 39(5): 527–30

    Article  PubMed  CAS  Google Scholar 

  96. Gallant JE, Staszewski S, Pozniak A, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA 2004 Jul 14; 292(2): 191–201

    Article  PubMed  CAS  Google Scholar 

  97. Blanco F, Garcia-Benayas T, Jose de la Cruz J, et al. First-line therapy and mitochondrial damage: different nucleosides, different findings. HIV Clin Trials 2003 Jan–Feb; 4(1): 11–9

    Article  PubMed  Google Scholar 

  98. de Mendoza C, Ramos JT, Ciria L, et al. Efficacy and safety of stavudine plus didanosine in asymptomatic HIV-infected children with plasma HIV RNA below 50,000 copies per milliliter. HIV Clin Trials 2002 Jan–Feb; 3(1): 9–16

    Article  Google Scholar 

  99. Hoggard PG, Kewn S, Barry MG, et al. Effects of drugs on 2′,3′-dideoxy-2′,3′-didehydrothymidine phosphorylation in vitro. Antimicrob Agents Chemother 1997 Jun; 41(6): 1231–6

    PubMed  CAS  Google Scholar 

  100. Havlir DV, Tierney C, Friedland GH, et al. In vivo antagonism with zidovudine plus stavudine combination therapy. J Infect Dis 2000 Jul; 182(1): 321–5

    Article  PubMed  CAS  Google Scholar 

  101. Moyle GJ. Where now for Trizivir? Role of the triple-NRTI pill post-AACTG 5095. AIDS Read 2003 May; 13(5): 223–4, 227, 244

    PubMed  Google Scholar 

  102. Gallant JE, Rodriguez AE, Weinberg WG, et al. Early virologic nonresponse to tenofovir, abacavir, and lamivudine in HIV-infected antiretroviral-naive subjects. J Infect Dis 2005 Dec 1; 192(11): 1921–30

    Article  PubMed  CAS  Google Scholar 

  103. Staszewski S, Keiser P, Montaner J, et al. Abacavir-lamivudinezidovudine vs indinavir-lamivudine-zidovudine in antire-troviral-naïve HIV-infected adults: a randomized equivalence trial. JAMA 2001; 285(9): 1155–63

    Article  PubMed  CAS  Google Scholar 

  104. Kline MW, Fletcher CV, Harris AT, et al. A pilot study of combination therapy with indinavir, stavudine (d4T), and didanosine (ddI) in children infected with the human immunodeficiency virus. J Pediatr 1998 Mar; 132 (3 Pt 1): 543–6

    Article  PubMed  CAS  Google Scholar 

  105. Kearney BP, Sayre JR, Flaherty JF, et al. Drug-drug and drugfood interactions between tenofovir disoproxil fumarate and didanosine. J Clin Pharmacol 2005; 45; 1360–7

    Article  PubMed  CAS  Google Scholar 

  106. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. Tenofovirrelated Fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-didanosine. Clin Infect Dis 2003 Dec 15; 37(12): el74–6

    Article  Google Scholar 

  107. Gathe J, Badaro R, Grimwood A, et al. Antiviral activity of enteric-coated didanosine, stavudine, and nelfinavir versus zidovudine plus lamivudine and nelfinavir. J Acquir Immune Defic Syndr 2002 Dec; 31(4): 399–403

    Article  PubMed  CAS  Google Scholar 

  108. Munderi P, on behalf of the DART trial team. Safety of nevirapine compared to abacavir on a background of zidovudine/lamivudine as first-line antiretroviral therapy: a randomised double-blind trial [abstract no. 109LB]. 13th Conference on Retroviruses and Opportunistic Infections; 2006 Feb 5–9; Denver (CO)

  109. DHHS panel on antiretroviral guidelines for adults and adolescents: a working group of the office of AIDS research advisory council. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents [online]. Available from URL: http://www.AIDSinfo.nih.gov [Accessed 2006 Oct 10]

  110. Antiretroviral therapy for HIV infection in adults and adolescents: recommendations for a public health approach, 2006 revision [online]. Available from URL: http://www.who.int/hiv/pub/guidelines/art/en/index.htm [Accessed 2007 Jun 1]

  111. Hussain S, Khayat A, Tolaymat A, et al. Nephrotoxicity in a child with perinatal HIV on tenofovir, didanosine and lopinavir/ritonavir. Pediatr Nephrol 2006 Jul; 21(7): 1034–6

    Article  PubMed  Google Scholar 

  112. Eshleman SH, Mracna M, Guay LA, et al. Selection and fading of resistance mutations in women and infants receiving nevirapine to prevent HIV-1 vertical transmission (HIVNET 012). AIDS. 2001; Oct 19; 15(15): 1951–7

    Article  PubMed  CAS  Google Scholar 

  113. Giuliano M, Palmisano L, Galluzza C, et al. Selection of resistance mutations in pregnant women receiving zidovudine and lamivudine to prevent HIV perinatal transmission. AIDS 2003 Jul 4; 17(10): 1570–2

    Article  PubMed  Google Scholar 

  114. Jourdain G, Ngo-Giang-Huong N, Le Coeur S, et al. Intrapartum exposure to nevirapine and subsequent maternal responses to nevirapine-based antiretroviral therapy. N Engl J Med 2004 Jul 15; 351(3): 229–40

    Article  PubMed  CAS  Google Scholar 

  115. Coakley EP, Gillis JM, Hammer SM. Phenotypic and genotypic resistance patterns of HIV-1 isolates derived from individuals treated with didanosine and stavudine. AIDS 2000 Jan 28; 14(2): F9–15

    Article  PubMed  CAS  Google Scholar 

  116. Melroy J, Nair V. The antiviral activity, mechanism of action, clinical significance and resistance of abacavir in the treatment of pediatric AIDS. Curr Pharm Des 2005; 11(29): 3847–52

    Article  PubMed  CAS  Google Scholar 

  117. Deval J, Navarro JM, Selmi B, et al. A loss of viral replicative capacity correlates with altered DNA polymerization kinetics by the human immunodeficiency virus reverse transcriptase bearing the K65R and L74V dideoxynucleoside resistance substitutions. J Biol Chem 2004 Jun 11; 279(24): 25489–96

    Article  PubMed  CAS  Google Scholar 

  118. Sharma PL, Nurpeisov V, Lee K, et al. Replication-dependent 65R→K reversion in human immunodeficiency virus type 1 reverse transcriptase double mutant K65R + L74V. Virology 2004 Apr 10; 321(2): 222–34

    Article  PubMed  CAS  Google Scholar 

  119. Haas DW. Pharmacogenomics and HIV therapeutics. J Infect Dis 2005 May 1; 191(9): 1397–400

    Article  PubMed  CAS  Google Scholar 

  120. Law WP, Dore GJ, Duncombe CJ, et al. Risk of severe hepatotoxicity associated with antiretroviral therapy in the HIV-NAT Cohort, Thailand, 1996-2001. AIDS 2003 Oct 17; 17(15): 2191–9

    Article  PubMed  CAS  Google Scholar 

  121. Moyle GJ. NNRTI choice: has 2NN changed our practice? AIDS Read 2003 Jul; 13(7): 325–8

    PubMed  Google Scholar 

  122. Aboulker JP, Babiker A, Chaix ML, et al. Highly active antiretroviral therapy started in infants under 3 months of age: 72-week follow-up for CD4 cell count, viral load and drug resistance outcome. AIDS 2004 Jan 23; 18(2): 237–45

    Article  PubMed  Google Scholar 

  123. Kovacs A, Montepiedra G, Carey V, et al. Immune reconstitution after receipt of highly active antiretroviral therapy in children with advanced or progressive HIV disease and complete or partial viral load response. J Infect Dis 2005 Jul 15; 192(2): 296–302

    Article  PubMed  Google Scholar 

  124. Green H, Gibb DM, Compagnucci A, et al. A randomised controlled trial of genotypic HIV drug resistance testing in HIV-1 infected children: the PERA (PENTA 8) trial. Antivir Ther 2006; 11(7): 857–67

    PubMed  CAS  Google Scholar 

  125. Ray AS, Yang Z, Shi J, et al. Insights into the molecular mechanism of inhibition and drug resistance for HIV-1 RT with carbovir triphosphate. Biochemistry 2002 Apr 23; 41(16): 5150–62

    Article  PubMed  CAS  Google Scholar 

  126. Ross L, Parkin N, Chappey C, et al. Phenotypic impact of HIV reverse transcriptase M184I/V mutations in combination with single thymidine analog mutations on nucleoside reverse transcriptase inhibitor resistance. AIDS 2004 Aug 20; 18(12): 1691–6

    Article  PubMed  CAS  Google Scholar 

  127. Campbell TB, Shulman NS, Johnson SC, et al. Antiviral activity of lamivudine in salvage therapy for multidrug-resistant HIV-1 infection. Clin Infect Dis 2005 Jul 15; 41(2): 236–42

    Article  PubMed  CAS  Google Scholar 

  128. Clinical advisory: important interim results from a phase III, randomized, double-blind comparison of three protease-inhibi-tor-sparing regimens for the initial treatment of HIV infection (AACTG Protocol A5095) [online]. Available from URL: http://www.nlm.nih.gov/databases/alerts/hiv.html [Accessed 1997 Feb 18]

  129. Saavedra J, McCoig C, Mallory M, et al. Clinical experience with triple nucleoside (NRTI) combination ZDV/3TC/abacavir (ABC) as initial therapy in HIV-infected children [abstract no. 1941]. 41st Interscience Conference on Antimicrobial Agents and Chemotherapy; 2001 Sep 22–25; Chicago (IL)

  130. Wells CJ, Sharland M, Smith CJ, et al. Triple nucleoside analogue therapy with zidovudine (AZT), lamivudine (3TC), and abacavir (ABC) in the paediatric HIV London South Network (PHILS-NET) cohort [abstract no. TuPeB4625]. XIV International AIDS Conference; 2002 Jul 7–12; Barcelona

  131. Pensieroso S, Romiti ML, Palma P, et al. Switching from protease inhibitor-based-HAART to a protease inhibitor-sparing regimen is associated with improved specific HIV-immune responses in HIV-infected children. AIDS 2006 Sep 11; 20(14): 1893–6

    Article  PubMed  CAS  Google Scholar 

  132. INITIO Trial International Co-ordinating Committee, Yeni P, Cooper DA, et al. Virological and immunological outcomes at 3 years after starting antiretroviral therapy with regimens containing non-nucleoside reverse transcriptase inhibitor, protease inhibitor, or both in INITIO: open-label randomised trial. Lancet 2006 Jul 22; 368(9532): 287–98

    Article  PubMed  CAS  Google Scholar 

  133. Cozzi-Lepri A, De Luca A, Phillips_AN, et al. A comparison between abacavir and efavirenz as the third drug used in combination with a background therapy regimen of 2 nucleoside reverse-transcriptase inhibitors in patients with initially suppressed viral loads. J Infect Dis 2006 Jul 1; 194(1): 20–8

    Article  PubMed  CAS  Google Scholar 

  134. Delaunay C, Brun-Vézinet F, Landman R, et al. Comparative selection of the K65R and M184V/I mutations in human immunodeficiency virus type 1-infected patients enrolled in a trial of first-line triple-nucleoside analog therapy (Tonus IMEA 021). J Virol 2005 Aug; 79(15): 9572–8

    Article  PubMed  CAS  Google Scholar 

  135. Bartlett JA, Johnson J, Herrera G, et al. Long-term results of initial therapy with abacavir and lamivudine combined with efavirenz, amprenavir/ritonavir, or stavudine. J Acquir Immune Defic Syndr 2006 Nov 1; 43(3): 284–92

    Article  PubMed  CAS  Google Scholar 

  136. van Leeuwen R, Katlama C, Murphy RL, et al. A randomized trial to study first-line combination therapy with or without a protease inhibitor in HIV-1-infected patients. AIDS 2003 May 2; 17(7): 987–99

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by an educational grant from GlaxoSmithKline. GlaxoSmithKline played no role in the preparation or review of the manuscript, nor was their approval of the final version required. English language assistance was provided by Wolters Kluwer Health Medical Communications. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Giaquinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giaquinto, C., Rampon, O., Penazzato, M. et al. Nucleoside and Nucleotide Reverse Transcriptase Inhibitors in Children. Clin. Drug Investig. 27, 509–531 (2007). https://doi.org/10.2165/00044011-200727080-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00044011-200727080-00001

Keywords

Navigation