Skip to main content
Log in

Glypican-3 and Alphafetoprotein as Diagnostic Tests for Hepatocellular Carcinoma

  • Review Article
  • Published:
Molecular Diagnosis Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumor. It is usually asymptomatic in the early stages and tends to be intravascularly and intrabiliary invasive. Therefore, most patients present with incurable disease at the time of detection and early diagnosis of HCC is critical for a good prognosis.

The imaging-based diagnosis of small tumors is relatively inaccurate, as cirrhotic and dysplastic nodules mimic HCC radiologically. The availability of a suitable serological marker to distinguish between HCC and benign liver lesions would, therefore, be very useful for early diagnosis. The only serological marker currently widely used for the diagnosis of HCC is alphafetoprotein (AFP). However, the sensitivity of this marker is limited (41–65%). Given the high heterogeneity of HCC, it is currently thought that an optimal serological test for HCC will be based on the simultaneous measurement of two or three highly specific serological markers.

Several laboratories have recently reported that glypican-3 (GPC3), a membrane-bound proteoglycan, is expressed by a large proportion of HCCs, but is undetectable in normal hepatocytes and non-malignant liver disease. Furthermore, various studies demonstrated that GPC3 could be used as a serological test for the diagnosis of patients with HCC. Although the specificity of the test was very high in the context of a population with chronic liver disease, the sensitivity was limited (within the same range as AFP). Interestingly, in most cases, elevated GPC3 values did not correlate with elevated AFP values. As a consequence, the serological level of at least one of the two markers was elevated in a large majority of HCC patients. These results suggest that the sensitivity of the diagnostic test can be significantly improved without compromising specificity with the simultaneous measurement of both GPC3 and AFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin 1999; 49(1): 33–64

    Article  PubMed  CAS  Google Scholar 

  2. Okuda K, Kojiro M. Neoplasms of the liver. In: Schiff L, Schiff ER, editors. Diseases of the liver. 7th ed. Philadelphia (PA): JB Lippincott Co., 1993

    Google Scholar 

  3. Bruix J, Boix L, Sala M, et al. Focus on hepatocellular carcinoma. Cancer Cell 2004; 5: 215–9

    Article  PubMed  CAS  Google Scholar 

  4. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2004; 362: 1907–17

    Article  Google Scholar 

  5. Befeler AS, Di Bisceglie AM. Hepatocellular carcinoma: diagnosis and treatment. Gastroenterology 2002; 122: 1609–19

    Article  PubMed  Google Scholar 

  6. El-Serag HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 2004; 127 (5 Suppl. 1): S27–34

    Article  PubMed  Google Scholar 

  7. Tanaka Y, Hanada K, Mizokami M, et al. A comparison of the molecular clock of hepatitis C virus in the United States and Japan predicts that hepatocellular carcinoma incidence in the United States will increase over the next two decades. Proc Natl Acad Sci U S A 2002; 99: 15584–9

    Article  PubMed  CAS  Google Scholar 

  8. Fong Y, Kemeny N, Lawrence T. Cancer of the liver and biliary tree. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. 6th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2001

    Google Scholar 

  9. Rustgi VK. Epidemiology of hepatocellular carcinoma. Gastroenterol Clin North Am 1987; 16: 545–51

    PubMed  CAS  Google Scholar 

  10. Wands JR. Prevention of hepatocellular carcinoma. N Engl J Med 2004; 351: 1567–70

    Article  PubMed  CAS  Google Scholar 

  11. Di Bisceglie AM. Hepatitis C and hepatocellular carcinoma. Semin Liver Dis 1995; 15: 64–9

    Article  PubMed  Google Scholar 

  12. Hasan F, Jeffers LJ, De Medina M, et al. Hepatitis C-associated hepatocellular carcinoma. Hepatology 1990; 12: 589–91

    Article  PubMed  CAS  Google Scholar 

  13. El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999; 340: 745–50

    Article  PubMed  CAS  Google Scholar 

  14. Murakami T, Kim T, Oi H, et al. Detectability of hypervascular hepatocellular carcinoma by arterial phase images of MR and spiral CT. Acta Radiol 1995; 36: 372–6

    PubMed  CAS  Google Scholar 

  15. Levy I, Greig PD, Gallinger S, et al. Resection of hepatocellular carcinoma without preoperative tumor biopsy. Ann Surg 2001; 34: 206–9

    Article  Google Scholar 

  16. Bosch FX, Ribes J, Diaz M, et al. Primary liver cancer: worldwide incidence and trends. Gastroenterology 2004; 127: S5–S16

    Article  PubMed  Google Scholar 

  17. Di Bisceglie AM. Issues in screening and surveillance for hepatocellular carcinoma. Gastroenterology 2004; 127: S104–7

    Article  PubMed  Google Scholar 

  18. Collier J, Sherman M. Screening for hepatocellular carcinoma. Hepatology 1998; 27: 273–8

    Article  PubMed  CAS  Google Scholar 

  19. Collier J, Sherman M. Elevated alphafetoprotein in benign liver diseases. Viral Hepatitis Rev 1998; 4: 31–41

    Google Scholar 

  20. Daniele B, Bencivenga A, Megna AS, et al. α-Fetoprotein and ultrasonography screening for hepatocellular carcinoma. Gastroenterology 2004; 127: S108–12

    Article  PubMed  Google Scholar 

  21. Chan D, Sell S. Tumor markers. In: Burtis CA, Ashwood A, Tietz NW, editors. Tietz textbook of clinical chemistry. 3rd ed. Philadelphia (PA): WB Saunders, 1999: 722–49

    Google Scholar 

  22. Taketa K. α-Fetoprotein: reevaluation in hepatology. Hepatology 1990; 12: 1420–32

    Article  PubMed  CAS  Google Scholar 

  23. Gupta S, Bent S, Kohlwes J. Test characteristics of α-fetoprotein for detecting hepatocellular carcinoma in patients with hepatitis C. Ann Intern Med 2003; 139: 46–50

    PubMed  CAS  Google Scholar 

  24. Levy I, Greig PD, Gallinger S, et al. Resection of hepatocellular carcinoma without preoperative tumor biopsy. Ann Surg 2001; 234: 206–9

    Article  PubMed  CAS  Google Scholar 

  25. Johnson PJ. The role of serum alpha-fetoprotein estimation in the diagnosis and management of hepatocellular carcinoma. Clin Liver Dis 2001; 5: 145–59

    Article  PubMed  CAS  Google Scholar 

  26. Trevisani F, D’Intino PE, Morselli-Labate AM, et al. Serum alpha-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of HBsAg and anti-HCV status. J Hepatol 2001; 34: 570–5

    Article  PubMed  CAS  Google Scholar 

  27. Sherman M. Alphafetoprotein: an obituary. J Hepatol 2001; 34: 603–5

    Article  PubMed  CAS  Google Scholar 

  28. Nomura F, Ishijima M, Kuwa K, et al. Serum des-gamma-carboxy prothrombin levels determined by a new generation of sensitive immunoassays in patients with small-sized hepatocellular carcinoma. Am J Gastroenterol 1999; 94: 650–4

    Article  PubMed  CAS  Google Scholar 

  29. Grazi GL, Mazziotti A, Legnani C, et al. The role of tumor markers in the diagnosis of hepatocellular carcinoma, with special reference to the des-gamma-carboxy prothrombin. Liver Transpl Surg 1995; 1: 249–55

    Article  PubMed  CAS  Google Scholar 

  30. Kasahara A, Hayashi N, Fusamoto H, et al. Clinical evaluation of plasma des-gamma-carboxy prothrombin as a marker protein of hepatocellular carcinoma in patients with tumors of various sizes. Dig Dis Sci 1993; 38: 2170–6

    Article  PubMed  CAS  Google Scholar 

  31. Ishii M, Gama H, Chida N, et al. Simultaneous measurements of serum alphafetoprotein and protein induced by vitamin K absence for detecting hepatocellular carcinoma: South Tohoku District Study Group. Am J Gastroenterol 2000; 95: 1036–40

    PubMed  CAS  Google Scholar 

  32. Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta 2001; 313: 15–9

    Article  PubMed  CAS  Google Scholar 

  33. Marrero JA, Lok ASF. Newer markers for hepatocellular carcinoma. Gastroenterology 2004; 127 (5 Suppl. 1): S1 13–9

    Article  CAS  Google Scholar 

  34. Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma: conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 2001; 35: 421–30

    CAS  Google Scholar 

  35. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002; 31: 339–46

    Article  PubMed  CAS  Google Scholar 

  36. Lander AD, Stipp CS, Ivins JK. The glypican family of heparan sulfate proteoglycans: major cell-surface proteoglycans: major cell-surface proteoglycans of the developing nervous system. Perspect Dev Neurobiol 1998; 1: 1–7

    Google Scholar 

  37. Veugelers M, David G. The glypicans: a family of GPI-anchored heparan sulfate proteoglycans with a potential role in the control of cell division. Trends Glycosci Glycotechnol 1998; 10: 145–52

    Article  CAS  Google Scholar 

  38. Filmus J, Selleck SB. Glypicans: proteoglycans with a surprise. J Clin Invest 2001; 108: 497–501

    PubMed  CAS  Google Scholar 

  39. Filmus J, Song HH. Glypicans. In: Iozzo RV, editor. Proteoglycans. New York: Marcel Dekker, 2000

    Google Scholar 

  40. Veugelers M, De Cat B, Ceulemans H, et al. Glypican-6, a new member of the glypican family of cell surface proteoglycans. J Biol Chem 1999; 274: 26968–77

    Article  PubMed  CAS  Google Scholar 

  41. Jackson SM, Nakato H, Sugiura M, et al. Dally, a Drosophila glypican, controls cellular responses to the TGF-beta-related morphogen Dpp. Development 1997; 124: 4113–20

    PubMed  CAS  Google Scholar 

  42. Baeg GH, Perrimon N. Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila. Curr Opin Cell Biol 2000; 12: 575–80

    Article  PubMed  CAS  Google Scholar 

  43. Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 2000; 404: 725–8

    Article  PubMed  CAS  Google Scholar 

  44. Paine-Saunders S, Viviano BL, Zupicich J, et al. Glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev Biol 2000; 225: 179–87

    Article  PubMed  CAS  Google Scholar 

  45. Lum L, Yao S, Mozer B, et al. Identification of hedgehog pathway components by RNAi in Drosophila cultured cells. Science 2003; 299: 2039–45

    Article  PubMed  CAS  Google Scholar 

  46. Desbordes SC, Sanson B. The glypican dally-like is required for hedgehog signalling in the embryonic epidermis of Drosophila. Development 2003; 130: 6245–55

    Article  PubMed  CAS  Google Scholar 

  47. Topczewsky J, Sepich DS, Myers DC, et al. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell 2001; 1: 251–64

    Article  Google Scholar 

  48. Ohkarawa B, Yamamoto TS, Tada M, et al. Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 2003; 130: 2129–38

    Article  Google Scholar 

  49. De Cat B, Muyldermans SY, Coomans C, et al. Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J Cell Biol 2003; 163: 625–35

    Article  PubMed  Google Scholar 

  50. Kramer KL, Yost HJ. Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet 2003; 37: 461–84

    Article  PubMed  CAS  Google Scholar 

  51. Baeg GH, Lin X, Khare N, et al. Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 2001; 128: 87–94

    PubMed  CAS  Google Scholar 

  52. Han C, Belenkaya TY, Wang B, et al. Drosophila glypicans control the cell-to-cell movement of hedgehog by a dynamin-independent process. Development 2004; 131: 601–11

    Article  PubMed  CAS  Google Scholar 

  53. Cumberledge S, Reichsman F. Glycosaminoglycans and WNTs: just a spoonful of sugar helps the signal go down. Trends Genet 1997; 13: 421–3

    Article  PubMed  CAS  Google Scholar 

  54. Ai X, Do AT, Lozynska O, et al. QSulf1 remodels the 6-O sulfation states of cell surface proteoglycans to promote Wnt signaling. J Cell Biol 2003; 162: 341–51

    Article  PubMed  CAS  Google Scholar 

  55. Fujise M, Takeo S, Kamimura K, et al. Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 2003; 130: 1515–22

    Article  PubMed  CAS  Google Scholar 

  56. Hsu HC, Cheng W, Lai PL. Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res 1997; 57: 5179–84

    PubMed  CAS  Google Scholar 

  57. Lage H, Dietel M. Cloning and characterization of human cDNAs encoding a protein with high homology to rat intestinal development protein OCI-5. Gene 1997; 188: 151–6

    Article  PubMed  CAS  Google Scholar 

  58. Pilia G, Hughes-Benzie RM, MacKenzie A, et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 1996; 12: 241–7

    Article  PubMed  CAS  Google Scholar 

  59. Zhu ZW, Friess H, Wang L, et al. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut 2001; 48: 558–64

    Article  PubMed  CAS  Google Scholar 

  60. Zhou XP, Wang HY, Yang GS, et al. Cloning and expression of MXR7 in human HCC tissue. World J Gastroenterol 2000; 6: 57–60

    PubMed  CAS  Google Scholar 

  61. Huang JS, Chao CC, Su TL, et al. Diverse cellular transformation capability of overexpressed genes in human hepatocellular carcinoma. Biochem Biophys Res Commun 2004; 315: 950–8

    Article  PubMed  CAS  Google Scholar 

  62. Capurro M, Wanless IR, Sherman M, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 2003; 125: 81–90

    Article  Google Scholar 

  63. Sung YK, Hwang SY, Park MK, et al. Glypican-3 is overexpressed in human hepatocellular carcinoma. Cancer Sci 2003; 94: 259–62

    Article  PubMed  CAS  Google Scholar 

  64. Nakatsura T, Yoshitake Y, Senju S, et al. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 2003; 306: 16–25

    Article  PubMed  CAS  Google Scholar 

  65. Hippo Y, Watanabe K, Watanabe A, et al. Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res 2004; 64: 2418–23

    Article  PubMed  CAS  Google Scholar 

  66. Filmus J, Capurro M. Glypican-3 as a serum marker for hepatocellular carcinoma [letter]. Cancer Res 2005 Jan 1; 65(1): 372

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Heather Bird for her help in the preparation of this review.

Funding for work described in this review was provided by the NIH. Dr Filmus does consulting work for Biomosaics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Filmus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filmus, J., Capurro, M. Glypican-3 and Alphafetoprotein as Diagnostic Tests for Hepatocellular Carcinoma. CNS Drugs 8, 207–212 (2004). https://doi.org/10.1007/BF03260065

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03260065

Keywords

Navigation