Skip to main content
Log in

Pluripotential Mechanisms of Cardioprotection with HMG-CoA Reductase Inhibitor Therapy

  • Leading Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Treatment with hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors has been accompanied by a reduced risk of cardiovascular events. Rapid onset of clinical benefit and weak correlations between plasma low density lipoprotein-cholesterol levels and coronary lumen change or cardiovascular events indicates that nonlipid mechanisms are involved in this beneficial effects with HMG-CoA reductase inhibitors. Furthermore, more rapid onset of clinical benefit with HMG-CoA reductase inhibitors in patients with acute coronary syndromes or acute myocardial infarction than in those with stable coronary heart disease suggest that HMG-CoA reductase inhibitors facilitate repair of ruptured or ulcerated atherosclerotic plaque, facilitate plaque stabilization and/or reduce thrombus formation on ruptured plaques.

Treatment with HMG-CoA reductase inhibitors improved endothelial dysfunction in patients with hypercholesterolemia and this improvement in endothelial function was not correlated with reduction in total serum cholesterol levels. Similarly, reduction in endothelial pre-proendothelin mRNA expression and endothelin synthesis and blood pressure lowering with HMG-CoA reductase inhibitors occurred independent of lipid-lowering. Finally, HMG-CoA reductase inhibitors increased endothelial nitric oxide levels i. e. upregulated endothelial nitric oxide synthetase expression via post-transcriptional mechanisms and prevented its down-regulation by oxidized LDL-C.

HMG-CoA reductase inhibitors have been shown to modulate the immune response by inhibiting activation of immune-competent cells such as macrophages, and antigen presentation to macrophages by T cells. Treatment with HMG-CoA reductase inhibitors can reduce expression, production and circulating levels of chemokines (monocyte chemoattractant protein-1) and proinflammatory cytokines [tumor necrosis factorα, interleukin (IL)-6 and IL-1β]. HMG-CoA reductase inhibitors reduced inflammation in human atheroma: significantly fewer macrophages and T cells, less oxidized LDL-C and higher collagen content. In addition, treatment with HMG-CoA reductase inhibitor led to decreased cell death within the atheroma. Treatment with these agents also reduced expression of inducible cellular adhesion molecules, decreased secretion of metalloproteinases by macrophages, reduced vascular smooth muscle cell apoptosis.

Lastly, HMG-CoA reductase inhibitors appear to have important effects on the thrombogenesis: reduced expression of tissue factor production and activity; increased production of tissue factor package inhibitor; decreased platelet thrombus formation and improved fibrinolysis as a result of lowered plasminogen activator inhibitor-1 levels. As the pluripotential cardioprotective mechanisms of HMG-CoA reductase inhibitors are further elucidated, it is envisaged that treatment with HMG-CoA reductase inhibitors will be initiated earlier and more frequently in patients with hypercholesterolemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Downs JR, Clearfield M, Wies S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels. Results of AFCAPS/TexCAPS. JAMA 1998; 279: 1615–22

    Article  PubMed  CAS  Google Scholar 

  2. Shepherd J, Cobb SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–7

    Article  PubMed  CAS  Google Scholar 

  3. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 355: 1001–9

    Article  Google Scholar 

  4. Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998; 339: 1349–57

    Article  Google Scholar 

  5. Scandinavian Simvastatin Survival Study Group. Baseline serum cholesterol and treatment effect in the Scandinavian Simvastatin Survival Study (4S). Lancet 1995; 345: 1274–5

    Google Scholar 

  6. Rosenson RS. Basic Mechanisms of stroke prevention with lipid-lowering therapy. Curr Atheroscler Rep 2000; 2: 120–5

    Article  PubMed  CAS  Google Scholar 

  7. Rosenson RS. Biological basis for statin therapy in stroke prevention. Curr Opin Neurol 2000; 13: 57–62

    Article  PubMed  CAS  Google Scholar 

  8. Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 1998; 279: 1643–50

    Article  PubMed  CAS  Google Scholar 

  9. Weissberg PL, Clesham GJ, Bennett MR. Is vascular smooth muscle cell proliferation beneficial? Lancet 1996; 347: 305–7

    Article  PubMed  CAS  Google Scholar 

  10. Delanty N, Vaughan CJ. Vascular effects of statins in stroke. Stroke 1997; 28: 2315–20

    Article  PubMed  CAS  Google Scholar 

  11. Blankenhorn DH, Azen SP, Kramsch DM, et al. Coronary angiographic changes with lovastatin therapy. The Monitored Atherosclerosis Regression Study (MARS). The MARS Research Group. Ann Intern Med 1993; 119: 969–76

    PubMed  CAS  Google Scholar 

  12. Waters D, Higginson L, Gladstone P, et al. Effects of monotherapy with an HMG-CoA reductase inhibitor on the progression of coronary atherosclerosis as assessed by serial quantitative arteriography. The Canadian Coronary Atherosclerosis Intervention Trial. Circulation 1994; 89: 959–68

    Article  PubMed  CAS  Google Scholar 

  13. MAAS Investigators. Effect of simvastatin on coronary atheroma: the Multicentre Anti-Atheroma Study (MAAS). Lancet 1994; 344: 633–8

    Article  Google Scholar 

  14. Pitt B, Mancini GBJ, Ellis SG, et al. Pravastatin limitation of atherosclerosis in the coronary arteries (PLAC I): Reduction in atherosclerosis progression and clinical events. J Am Coll Cardiol 1995; 26: 1133–9

    Article  PubMed  CAS  Google Scholar 

  15. Jukema JW, Bruschke AV, van Boven AJ, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995; 91: 2528–40

    Article  PubMed  CAS  Google Scholar 

  16. Herd JA, Ballantyne CM, Farmer JA, et al. Effects of fluvastatin on coronary atherosclerosis in patients with mild to moderate cholesterol elevations (Lipoprotein and Coronary Atherosclerosis Study [LCAS]). Am J Cardiol 1997; 80: 278–86

    Article  PubMed  CAS  Google Scholar 

  17. Gotto Jr AM. Lipid lowering, regression, and coronary events. A review of the Interdisciplinary Council on Lipids and Cardiovascular Risk Intervention, Seventh Council meeting. Circulation 1995; 92: 646–56

    Article  PubMed  Google Scholar 

  18. Rosenson RS, Shalaurova I, Otvos J. Relations of lipoprotein subclass levels and LDL size to reduction in coronary atherosclerosis in the PLAC-I trial [abstract]. Atherosclerosis 2000; 151: 237

    Article  Google Scholar 

  19. West of Scotland Coronary Prevention Study Group. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 1998; 97: 1440–5

    Article  Google Scholar 

  20. Gotto Jr AM, Whitney E, Stein EA, et al. Relation between baseline and ontreatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 2000; 101: 477–84

    Article  PubMed  CAS  Google Scholar 

  21. Friedwald WT, Levy RI, Frederickson DS. Estimation of the concentration of lowdensity lipoprotein cholesterol in plasma, without use of the preparative ultra-centrifuge. Clin Chem 1972; 18: 499–502

    Google Scholar 

  22. Casey PJ. Protein lipidation in cell signaling. Science 1995; 268: 221–5

    Article  PubMed  CAS  Google Scholar 

  23. Laufs U, La Fata V, Plutzky J, et al. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998; 97: 1129–35

    Article  PubMed  CAS  Google Scholar 

  24. Endres M, Laufs U, Huang Z, et al. Stroke protection by 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 1998; 95: 8880–5

    Article  PubMed  CAS  Google Scholar 

  25. Essig M, Nguyen G, Prie D, et al. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase fibrinolytic activity in rat aortic endothelial cells: role of geranylgeranylation and Rho proteins. Circ Res 1998; 83: 683–90

    Article  PubMed  CAS  Google Scholar 

  26. Laufs U, Marra D, Node K, et al. 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing rho GTPase-induced down-regulation of p27 (Kipl). J Biol Chem 1999; 274: 21926–31

    Article  PubMed  CAS  Google Scholar 

  27. Guijarro C, Bianco-Colio LM, Ortego M, et al. 3-Hydroxy-3-methylglutaryl coenzyme A reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res 1998; 83: 490–500

    Article  PubMed  CAS  Google Scholar 

  28. Sacks FM, Tonkin AM, Shepherd J, et al. Effects of pravastatin on coronary disease events in subgroups defined by coronary risk factors. The Prospective Pravastatin Pooling Project. Circulation 2000; 102: 1893–900

    Article  PubMed  CAS  Google Scholar 

  29. Stein JH, Rosenson RS. Lipoprotein Lp(a) excess and coronary heart disease. Arch Intern Med 1997; 157: 1170–6

    Article  PubMed  CAS  Google Scholar 

  30. Arntz HR, Agrawal R, Wunderlich W, et al. Beneficial Effects of Pravastatin (+/−Colestyramine/Nicain) Initiated Immediately After a Coronary Event (The Randomized Lipid-Coronary Artery Disease [L-CAD] Study). Am J Cardiol 2000; 86: 1293–8

    Article  PubMed  CAS  Google Scholar 

  31. Schwartz GG, Olsson AG, Ezekowitz MD, et al. The Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) study. JAMA 2001; 285: 1711–8

    Article  PubMed  CAS  Google Scholar 

  32. Home BD, Muhlestein JB, Carlquist JF, et al. Statin therapy, lipid levels, C-reactive protein and the survival of patients with angiographically severe coronary artery disease. J Am Coll Cardiol 2000; 36: 1774–80

    Article  Google Scholar 

  33. Stenestrand U, Wallentin L. Early statin treatment following acute myocardial infarction and 1-year survival. JAMA 2001; 285: 430–6

    Article  PubMed  CAS  Google Scholar 

  34. Rosenson RS. Statin therapy in acute cardiovascular syndromes: a new horizon. Cardiol Rev 1999 May; 1-6

  35. Koudy-Williams J, Sukhova GK, Herrington DM, et al. Pravastatin has cholesterol lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol 1998; 31: 684–91

    Article  Google Scholar 

  36. Sparrow CP, Burton CA, Hernandez M, et al. Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler Thromb Vasc Biol 2001; 21: 115–21

    Article  PubMed  CAS  Google Scholar 

  37. Fukumoto Y, Libby P, Rabkin E, et al. Statins alter smooth muscle cell accumulation and collagen content in established atheroma of watanabe heritable hyperlipidemic rabbits. Circulation 2001; 103: 993–9

    Article  PubMed  CAS  Google Scholar 

  38. Ross R. Atherosclerosis — an inflammatory disease. N Engl J Med 1999; 340: 115–26

    Article  PubMed  CAS  Google Scholar 

  39. Egashira K, Hirooka Y, Kai H, et al. Reduction in serum cholesterol with pravastatin improves endothelium-dependent coronary vasomotion in patients with hypercholesterolemia. Circulation 1994; 89: 2519–4

    Article  PubMed  CAS  Google Scholar 

  40. Treasure CB, Klein JL, Weintraub WS, et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995; 332: 481–7

    Article  PubMed  CAS  Google Scholar 

  41. Anderson TJ, Meredith IT, Yeung AC, et al. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 1995; 332: 488–93

    Article  PubMed  CAS  Google Scholar 

  42. Aengevaeren WRM, Uijen GJH, Jukema JW, et al. Functional evaluation of lipidlowering therapy by pravastatin in the Regression Growth Evaluation Statin Study. Circulation 1997; 96: 429–35

    Article  PubMed  CAS  Google Scholar 

  43. Eichstadt HW, Eskotter H, Hoffmann I, et al. Improvement of myocardial perfusion by short-term fluvastatin therapy in coronary artery disease. Am J Cardiol 1995; 76: A122–5

    Article  Google Scholar 

  44. van Boven AJ, Jukema JW, Zwinderman AH, et al. Reduction of transient myocardial ischemia with pravastatin in addition to the conventional treatment in patients with angina pectoris. Circulation 1996; 94: 1503–5

    Article  PubMed  Google Scholar 

  45. Andrews TC, Raby K, Barry J, et al. Effect of cholesterol reduction on myocardial ischemia in patients with coronary disease. Circulation 1997; 95: 324–8

    Article  PubMed  CAS  Google Scholar 

  46. Dupuis J, Tardif JC, Cernacek P, et al. Cholesterol reduction rapidly improves endothelial function after acute coronary syndromes. The RECIFE (reduction of cholesterol in ischemia and function of the endothelium) trial. Circulation 1999; 99: 3227–3

    Article  PubMed  CAS  Google Scholar 

  47. Vita JA, Yeung AC, Winniford M, et al. Effect of Cholesterol-Lowering Therapy on Coronary Endothelial Vasomotor Function in Patients With Coronary Artery Disease. Circulation 2000; 102: 846–51

    Article  PubMed  CAS  Google Scholar 

  48. Cannon RO. Cardiovascular Benefit of Cholesterol-Lowering Therapy: Does Improved Endothelial Vasodilator Function Matter? Circulation 2000; 102: 820–2

    Article  PubMed  Google Scholar 

  49. Kaesemeyer WH, Caldwell RB, Huang J, et al. Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. J Am Coll Cardiol 1999; 33: 234–41

    Article  PubMed  CAS  Google Scholar 

  50. John S, Schlaich M, Langenfeld M, et al. Increased bioavailability of nitric oxide after lipid-lowering therapy in hypercholesterolemic patients. A randomized, placebo-controlled, double-blind study. Circulation 1998; 98: 211–6

    Article  PubMed  CAS  Google Scholar 

  51. Wilson SH, Simari RD, Best PJM, et al. Simvastatin preserves coronary endothelial function in hypercholesterolemia in the absence of lipid lowering. Arterioscler Thromb Vasc Biol 2001; 21: 122–8

    Article  PubMed  CAS  Google Scholar 

  52. Hernandez-Perera O, Perez-Sala D, Navarro-Antolin J, et al. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 1998; 101: 2711–9

    Article  PubMed  CAS  Google Scholar 

  53. Glorioso N, Troffa C, Filigheddu F, et al. Effect of the HMG-CoA reductase inhibitors on blood pressure in patients with essential hypertension and primary hypercholesterolemia. Hypertension 1999; 34: 1281–6

    Article  PubMed  CAS  Google Scholar 

  54. Borghi C, Prandin MG, Costa FV, et al. Use of statins and blood pressure control in treated hypertensive patients with hypercholesterolemia. J Cardiovasc Pharmacol 2000; 35: 549–5

    Article  PubMed  CAS  Google Scholar 

  55. Kunsch C, Medford R. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 1999; 85: 753–66

    Article  PubMed  CAS  Google Scholar 

  56. Collins T, Cybulsky MI. NF-kB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 2001; 107: 255–64

    Article  PubMed  CAS  Google Scholar 

  57. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–71

    Article  PubMed  CAS  Google Scholar 

  58. Diaz MN, Frei B, Vita JA, et al. Mechanisms of disease: antioxidants and atherosclerotic heart disease. N Engl J Med 1998; 337: 408–16

    Google Scholar 

  59. Tormey VJ, Faul J, Leonard C, et al. T-cell cytokines may control the balance of functionally distinct macro-phage populations. Immunology 1997; 90: 463–9

    Article  PubMed  CAS  Google Scholar 

  60. Hansson GK, Jonasson L, Seifert PS, et al. Immune mechanisms in atherosclerosis. Arteriosclerosis 1989; 9: 567–78

    Article  PubMed  CAS  Google Scholar 

  61. Kwak B, Mulhaupt F, Myit S, et al. Statins as a newly recognized type of immunomodulator. Nat Med 2000; 6: 1399–402

    Article  PubMed  CAS  Google Scholar 

  62. Sadeghi MM, Collinge M, Pardi R, et al. Simvastatin modulates cytokine-mediated endothelial cell adhesion molecule induction: involvement of an inhibitory G protein. Immunology 2000; 165: 2712–8

    CAS  Google Scholar 

  63. Aikawa M, Rabkin E, Sugiyama S, et al. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 2001; 103: 276–83

    Article  PubMed  CAS  Google Scholar 

  64. Bustos C, Hernandez-Presa MA, Ortego M, et al. HMG-CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis. J Am Coll Cardiol 1998; 32: 2057–64

    Article  PubMed  CAS  Google Scholar 

  65. Ortego M, Bustos C, Hernández-Presa MA, et al. Atorvastatin reduces NF-kB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis 1999; 147(2): 253–61

    Article  PubMed  CAS  Google Scholar 

  66. Weber C, Eri W, Weber KSC, et al. HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol 1997; 30: 1212–7

    Article  PubMed  CAS  Google Scholar 

  67. Crisby M, Nordin-Fredriksson G, Shah PK, et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 2001; 103: 926–33

    Article  PubMed  CAS  Google Scholar 

  68. Libby P, Sukhova G, Lee RT, et al. Cytokines regulate vascular functions related to stability of the atherosclerotic plaque. J Cardiovasc Pharmacol 1995; 25 Suppl. 2: S9–12

    Article  PubMed  CAS  Google Scholar 

  69. Rosenson RS, Tangney CC, Casey LC. Inhibition of proinflammatory cytokine production by pravastatin. Lancet 1998; 353: 983–4

    Article  Google Scholar 

  70. Ferro D, Parrotto S, Basili S, et al. Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hypercholesterolemia. J Am Coll Cardiol 2000; 36: 427–31

    Article  PubMed  CAS  Google Scholar 

  71. Kothe H, Dalhoff K, Rupp J, et al. Hydroxymethylglutaryl coenzyme a reductase inhibitors modify the inflammatory response of human macrophages and endothelial cells infected with Chlamydia pneumoniae. Circulation 2000; 101: 1760–3

    Article  PubMed  CAS  Google Scholar 

  72. Ridker PM, Rifai N, Pfeffer MA, et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Circulation 1998; 98: 839–44

    Article  PubMed  CAS  Google Scholar 

  73. Strandberg TE, Vanhanen H, Tikkanen MJ. Effect of statins on c-reactive protein in patients with coronary artery disease. Lancet 1999; 353: 118–9

    Article  PubMed  CAS  Google Scholar 

  74. Ridker PM, Rifai N, Lowenthal SP, et al. Rapid reduction in c-reactive protein with cerivastatin among 785 patients with primary hypercholesterolemia. Circulation 2001; 103: 1191–3

    Article  PubMed  CAS  Google Scholar 

  75. Jialal I, Stein D, Balis D, et al. Effect of hydroxymethyl glutaryl coenzyme a reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation 2001; 103: 1933–5

    Article  PubMed  CAS  Google Scholar 

  76. Bellosta S, Via D, Canavesi M, et al. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Aterioscler Thromb Vasc Biol 1998; 18: 1671–8

    Article  CAS  Google Scholar 

  77. Rosenson RS, Lowe GDO. Effects of lipids and lipoproteins on thrombosis and rheology. Atherosclerosis 1998; 140: 271–80

    Article  PubMed  CAS  Google Scholar 

  78. Colli S, Eligini S, Lalli M, et al. Vastatins inhibit tissue factor in cultured human macrophages. A novel mechanism of protection against atherothrombosis. Arterioscler Thromb Vasc Biol 1997; 17: 265–72

    Article  PubMed  CAS  Google Scholar 

  79. Lawson JH, Butenas S, Mann KG. The evaluation of complex dependent alterations in human factor VIIa. J Biol Chem 1992; 267: 4834–3

    PubMed  CAS  Google Scholar 

  80. Carvalho AC, Colman RW, Less RS. Platelet function in hyperlipoproteinemia. N Engl J Med 1974; 290: 434–8

    Article  PubMed  CAS  Google Scholar 

  81. Corash L, Andersen J, Poindexter BJ, et al. Platelet function and survival in patients with severe hypercholesterolemia. Arteriosclerosis 1981; 1: 443–8

    Article  PubMed  CAS  Google Scholar 

  82. Nofer JR, Tepel M, Kehrel B, et al. Low-density lipoproteins inhibit the Na+/H+ antiport in human platelets. A novel mechanism enhancing platelet activity in hypercholesterolemia. Circulation 1997; 95: 1370–7

    Article  PubMed  CAS  Google Scholar 

  83. Lacoste L, Lam JYT, Hung J, et al. Hyperlipidemia and coronary disease: correction of the increased thrombogenic potential with cholesterol reduction. Circulation 1995; 92: 3172–7

    Article  PubMed  CAS  Google Scholar 

  84. Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med 1993; 118: 956–63

    PubMed  CAS  Google Scholar 

  85. Rosenson RS, Tangney CC, Schaefer EJ. Comparative study of HMG-CoA reductase inhibitors on fibrinogen. Atherosclerosis 2001; 155: 463–6

    Article  PubMed  CAS  Google Scholar 

  86. Wierzbicki AS, Lumb PJ, Semra YK, et al. Effect of atorvastatin on plasma fibrinogen. Lancet 1998; 351: 569–70

    Article  PubMed  CAS  Google Scholar 

  87. Avellone G, Di Garbo V, Cordova R, et al. Changes induced by pravastatin treatment on hemostatic and fibrinolytic patterns in patients with type IIB hyperlipoproteinemia. Curr Ther Res Clin Exp 1994; 55: 1335–44

    Article  Google Scholar 

  88. Wada H, Mori Y, Kaneko T, et al. Hypercoagulable state in patients with hypercholesterolemia: effects of pravastatin. Clin Ther 1992; 14: 829–34

    PubMed  CAS  Google Scholar 

  89. Blann AD, Gurney D, Hughes E, et al. Influence of pravastatin on lipoproteins, and on endothelial, platelet, and inflammatory markers in subjects with peripheral artery disease. Am J Cardiol 2001; 88; 89–92

    Article  CAS  Google Scholar 

  90. Mitropoulos KA, Armitage JM, Collins R, et al. Randomized placebo-controlled study of the effects of simvastatin on haemostatic variables, lipoproteins and free fatty acids. Eur Heart J 1997; 18: 235–41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Rosenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenson, R.S. Pluripotential Mechanisms of Cardioprotection with HMG-CoA Reductase Inhibitor Therapy. Am J Cordiovosc Drugs 1, 411–420 (2001). https://doi.org/10.2165/00129784-200101060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200101060-00001

Keywords

Navigation