Skip to main content
Log in

The Use of the Osmole Gap as a Screening Test for the Presence of Exogenous Substances

  • Review Article
  • Published:
Toxicological Reviews

Abstract

The rapid and accurate diagnosis of toxic alcohol poisoning due to methanol (methyl alcohol) [MeOH] and ethylene glycol (EG), is paramount in preventing serious adverse outcomes. The quantitative measurement of specific serum levels of these substances using gas chromatography is expensive, time consuming and generally only available at major tertiary-care facilities. Therefore, because these toxic substances are osmotically active and the measurement of serum osmolality is easily performed and more readily available, the presence of an osmole gap (OG) has been adopted as an alternative screening test. By definition, the OG is the difference between the measured serum osmolality determined using the freezing point depression (Osmm) and the calculated serum molarity (Mc), which is estimated from the known and readily measurable osmotically active substances in the serum, in particular sodium, urea, glucose, and potassium and ethanol (alcohol). Thus, the OG = Osmm − Mc, and an OG above a specific threshold (the threshold of positivity) suggests the presence of unmeasured osmotically active substances, which could be indicative of a toxic exposure. The objectives of this study were to review the principles of evaluating screening tests, the theory behind the OG as a screening test and the literature upon which the adoption of the OG as a screening test has been based.

This review revealed that there have been numerous equations derived and proposed for the estimation of the Mc, with the objective of developing empirical evidence of the best equation for the determination of the OG and ultimately the utility of OG as a screening test. However, the methods and statistical analysis employed have generally been inconsistent with recommended guidelines for screening test evaluation and although many equations have been derived, they have not been appropriately validated.

Specific evidence of the clinical utility of the OG requires that a threshold of positivity be definitively established, and the sensitivity and specificity of the OG in patients exposed to either EG or MeOH be measured. However, the majority of studies to date have only evaluated the relationship between the Osmm (mmol/kg H2O) and the Mc (mmol/L) in patients that have not been exposed to either MeOH or EG. While some studies have evaluated the relationship between the OG and serum ethanol concentration, these findings cannot be extrapolated to the use of the OG to screen for toxic alcohol exposure.

This review shows that there has not been an appropriately designed empirical evaluation of the diagnostic utility of the OG and that its clinical utility remains hypothetical, having been theoretically extrapolated from the non-poisoned population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I.
Table II.
Table III.

Similar content being viewed by others

References

  1. Koga Y, Purssell RA, Lynd LD. The irrationality of the present use of the osmole gap: applicable physical chemistry principles and recommendations to improve the validity of current practices. Toxicol Rev 2004; 23(3): 203–11

    Article  PubMed  CAS  Google Scholar 

  2. Edelman IS, Leibman J, O’Meara MP, et al. Interrelations between serum sodium concentrations, serum osmolarity, and total exchangeable sodium, total exchangeable potassium, and total body water. J Clin Invest 1958; 37: 1236–56

    Article  PubMed  CAS  Google Scholar 

  3. Dorwart WV, Chalmers L. Comparison of methods for calculating serum osmolality form chemical concentrations, and the prognostic value of such calculations. Clin Chem 1975; 21(2): 190–4

    PubMed  CAS  Google Scholar 

  4. Gennari FJ. Current concepts: serum osmolality: uses and limitations. N Engl J Med 1984; 310(2): 102–5

    Article  PubMed  CAS  Google Scholar 

  5. Smithline N, Gardner Jr KD. Gaps: anionic and osmolal. JAMA 1976; 236(14): 1594–7

    Article  PubMed  CAS  Google Scholar 

  6. Glasser L, Sternglanz PD, Combie J, et al. Serum osmolality and its applicability to drug overdose. Am J Clin Pathol 1973; 60(5): 695–9

    PubMed  CAS  Google Scholar 

  7. Bhagat CI, Garcia-Webb P, Fletcher E, et al. Calculated vs measured plasma osmolalities revisited. Clin Chem 1984; 30(10): 1703–5

    PubMed  CAS  Google Scholar 

  8. Worthley LI, Guerin M, Pain RW. For calculating osmolality, the simplest formula is the best. Anaesth Intensive Care 1987; 15(2): 199–202

    PubMed  CAS  Google Scholar 

  9. Hoffman RS, Smilkstein MJ, Howland MA, et al. Osmol gaps revisited: normal values and limitations. J Toxicol Clin Toxicol 1993; 31(1): 81–93

    Article  PubMed  CAS  Google Scholar 

  10. Osypiw JC, Watson ID, Gill G. What is the best formula for predicting osmolar gap? Ann Clin Biochem 1997; 34 (Pt 5): 551–2

    PubMed  Google Scholar 

  11. Kearney J, Rees S, Chiang W. Availability of serum methanol and ethylene glycol levels: a national survey [abstract]. J Toxicol Clin Toxicol 1997; 35: 509

    Google Scholar 

  12. Cole P, Morrison AS. Basic issues for population screening for cancer. J Natl Cancer Inst 1980; 64: 1263–72

    PubMed  CAS  Google Scholar 

  13. Morrison AS. Screening. In: Rothman KJ, Greenland S, editors. Modern epidemiology. 2nd ed. Hagerstown: Lippincott-Raven, 1998: 7–28

    Google Scholar 

  14. Sackett DL. Clinical epidemiology: a basic science for clinical medicine. 2nd ed. Boston (MA): Little Brown, 1991

    Google Scholar 

  15. Reid MC, Lachs MS, Feinstein AR. Use of methodological standards in diagnostic test research: getting better but still not good. JAMA 1995; 274(8): 645–51

    Article  PubMed  CAS  Google Scholar 

  16. Lijmer JG, Mol BW, Heisterkamp S, et al. Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 1999; 282(11): 1061–6

    Article  PubMed  CAS  Google Scholar 

  17. Bossuyt PM, Reitsma JB, Bruns DE, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med 2003; 138(1): 1W–2

    Google Scholar 

  18. Barceloux DG, Bond GR, Krenzelok EP, et al. American Academy of Clinical Toxicology: practice guidelines on the treatment of methanol poisoning. J Toxicol Clin Toxicol 2002; 40(4): 415–46

    Article  PubMed  CAS  Google Scholar 

  19. Osterloh JD, Kelly TJ, Khayam-Bashi H, et al. Discrepancies in osmolal gaps and calculated alcohol concentrations. Arch Pathol Lab Med 1996; 120(7): 637–41

    PubMed  CAS  Google Scholar 

  20. Purssell RA, Pudek M, Brubacher J, et al. Derivation and validation of a formula to calculate the contribution of ethanol to the osmolal gap. Ann Emerg Med 2001; 38(6): 653–9

    Article  PubMed  CAS  Google Scholar 

  21. Reynolds HN, Teiken P, Regan ME, et al. Hyperlactatemia, increased osmolar gap, and renal dysfunction during continuous lorazepam infusion. Crit Care Med 2000; 28(5): 1631–4

    Article  PubMed  CAS  Google Scholar 

  22. Van de Wiele B, Rubinstein E, Peacock W, et al. Propylene glycol toxicity caused by prolonged infusion of etomidate. J Neurosurg Anesthesiol 1995; 7(4): 259–62

    Article  PubMed  Google Scholar 

  23. Bekeris L, Baker C, Fenton J, et al. Propylene glycol as a cause of an elevated serum osmolality. Am J Clin Pathol 1979; 72(4): 633–6

    PubMed  CAS  Google Scholar 

  24. Lyons MK, Meyer FB. Cerebrospinal fluid physiology and the management of increased intracranial pressure. Mayo Clin Proc 1990; 65(5): 684–707

    Article  PubMed  CAS  Google Scholar 

  25. Smith HP, Kelly Jr DL, McWhorter JM, et al. Comparison of mannitol regimens in patients with severe head injury undergoing intracranial monitoring. J Neurosurg 1986; 65(6): 820–4

    Article  PubMed  CAS  Google Scholar 

  26. Kovoshetz WJ, Rapper AH. Raised intracranial pressure and brain resuscitation in neurological practice. Curr Con Cerebrovasc Dis 1984; 19: 31–6

    Google Scholar 

  27. Campbell HT, Fincher ME, Sklar AH. Severe hyponatremia without severe hypoosmolality following transurethral resection of the prostate (TURP) in end-stage renal disease. Am J Kidney Dis 1988; 12(2): 152–5

    PubMed  CAS  Google Scholar 

  28. Iseri LT, Kaplan MA, Evans MJ, et al. Effect of concentrated contrast media during angiography on plasma volume and plasma osmolality. Am Heart J 1965; 69: 154–8

    Article  PubMed  CAS  Google Scholar 

  29. Runckel DN, Swanson JR. Effect of dimethyl sulfoxide on serum osmolality. Clin Chem 1980; 26(12): 1745–7

    PubMed  CAS  Google Scholar 

  30. Price EA, D’Alessandro A, Kearney molar gap with minimal acidosis in combined methanol and methyl ethyl ketone ingestion. J Toxicol Clin Toxicol 1994; 32(1): 79–84

    Article  PubMed  CAS  Google Scholar 

  31. Brubacher JR, Pudek M, Filiatrault L. Unexplained osmole gap following lacquer thinner ingestion [abstract]. J Toxicol Clin Toxicol 1999; 37: 654–5

    Google Scholar 

  32. Barceloux DG, Krenzelok EP, Olson KR. American academy of clinical toxicology: practice guidelines on the treatment of ethylene glycol poisoning. J Toxicol Clin Toxicol 1999; 37: 537–60

    Article  PubMed  CAS  Google Scholar 

  33. Browning RG, Curry SC. Effect of glycol ethers on plasma osmolality. Hum Exp Toxicol 1992; 11(6): 488–90

    Article  PubMed  CAS  Google Scholar 

  34. Aabakken L, Johansen KS, Rydningen EB, et al. Osmolal and anion gaps in patients admitted to an emergency medical department. Hum Exp Toxicol 1994; 13(2): 131–4

    Article  PubMed  CAS  Google Scholar 

  35. Kruse JA, Cadnapaphornchai P. The serum osmole gap. J Crit Care 1994; 9(3): 185–97

    Article  PubMed  CAS  Google Scholar 

  36. Glaser DS. Utility of the serum osmol gap in the diagnosis of methanol or ethylene glycol ingestion. Ann Emerg Med 1996; 27(3): 343–6

    Article  PubMed  CAS  Google Scholar 

  37. Weisberg HF. Osmolality: calculated, ‘delta’, and more formulas. Clin Chem 1975; 21(8): 1182–5

    PubMed  CAS  Google Scholar 

  38. Hirosawa H, Odaka M, Sugai T. Prognostic value of serum osmolality gap in patients with multiple organ failure treated with hemopurification. Artif Organs 1988; 12: 382–7

    Article  Google Scholar 

  39. Inaba H, Hirasawa H, Mizuguchi T. Serum osmolality gap in postoperative patients in intensive care. Lancet 1987; I(8546): 1331–5

    Article  Google Scholar 

  40. Galvan LA, Watts MT. Generation of an osmolality gap-ethanol nomogram from routine laboratory data. Ann Emerg Med 1992; 21(11): 1343–8

    Article  PubMed  CAS  Google Scholar 

  41. Geller RJ, Spyker DA, Herald DA. Serum osmolal gap and ethanol concentration: a simple and accurate formula. Clin Tox 1986; 24: 77–84

    Article  CAS  Google Scholar 

  42. Snynder H, Williams D, Zink B. Accuracy of blood ethanol determination using serum osmolality. J Emerg Med 1992; 10: 129–33

    Article  Google Scholar 

  43. Coakley JC, Tabgui S, Dennis PM. Screening for alcohol intoxication by the osmolar gap. Pathology 1983; 15: 321–3

    Article  PubMed  CAS  Google Scholar 

  44. Britten JS, Meyers RA, Benner C. Blood ethanol and serum osmolality in the trauma patient. Am J Surg 1972; 48: 451–5

    Google Scholar 

  45. Sivilotti MLA, Collier CP, Choi SB. Ethanol and the osmole gap. Ann Emerg Med 2002; 40: 656–7

    Article  Google Scholar 

  46. Kjonnoy M, Hunderi OH, Havda KE. Methanol outbreak in rural areas: use of anion and osmolal gaps in the diagnosis of methanol poisoning [abstract]. J Toxicol Clin Toxicol 2003; 41: 479

    Google Scholar 

  47. Kostic MA, Dart RC. Rethinking the toxic methanol level. J Toxicol Clin Toxicol 2003; 41(6): 793–800

    Article  PubMed  CAS  Google Scholar 

  48. Haviv YS, Rubinger D, Zamir E, et al. Pseudo-normal osmolal and anion gaps following simultaneous ethanol and methanol ingestion. Am J Nephrol 1998; 18(5): 436–8

    Article  PubMed  CAS  Google Scholar 

  49. Lewis LD, Smith BW, Mamourian AC. Delayed sequelae after acute overdoses or poisonings: cranial neuropathy related to ethylene glycol ingestion. Clin Pharmacol Ther 1997; 61(6): 692–9

    Article  PubMed  CAS  Google Scholar 

  50. Scherger DL, Wruk KM, Linden C, et al. Ethylene glycol intoxication. J Emerg Nurs 1983; 9(2): 71–3

    PubMed  CAS  Google Scholar 

  51. Steinhart B. Case report: severe ethylene glycol intoxication with normal osmolal gap: ‘a chilling thought’. J Emerg Med 1990; 8(5): 583–5

    Article  PubMed  CAS  Google Scholar 

  52. Darchy B, Abruzzese L, Pitiot O, et al. Delayed admission for ethylene glycol poisoning: lack of elevated serum osmol gap. Intensive Care Med 1999; 25(8): 859–61

    Article  PubMed  CAS  Google Scholar 

  53. De Leacy EA, Moxon LN, Ellis VM, et al. A report of accidental ethylene glycol ingestion in 2 siblings. Pathology 1995; 27(3): 273–6

    Article  PubMed  Google Scholar 

  54. Boyd DR, Mansberger Jr AR. Serum water and osmolal changes in hemorrhagic shock: an experimental and clinical study. Am Surg 1968; 34(10): 744–9

    PubMed  CAS  Google Scholar 

  55. Boyd DR, Folk FA, Condon RE, et al. Predictive value of serum osmolality in shock following major trauma. Surg Forum 1970; 21: 32–3

    PubMed  CAS  Google Scholar 

  56. Rubin AL, Braveman WS, Dexter RL. The relationship between plasma osmolality and concentration in disease states [abstract]. Clin Res Proc 1956; 4: 129

    Google Scholar 

  57. Cowley RA, Attar S, LaBrosse E, et al. Some significant biochemical parameters found in 300 shock patients. J Trauma 1969; 9(11): 926–38

    Article  PubMed  CAS  Google Scholar 

  58. Giacoia GP, Miranda R, West KI. Measured vs calculated plasma osmolality in infants with very low birth weights. Am J Dis Child 1992; 146(6): 712–7

    PubMed  CAS  Google Scholar 

  59. Bhagat CI, Garcia-Webb P, Beilby JP, et al. Unexplained osmolal gap in diabetic ketoacidosis (not due to acetone). Clin Chem 1990; 36(2): 403–4

    PubMed  CAS  Google Scholar 

  60. Davidson DF. Excess osmolal gap in diabetic ketoacidosis explained. Clin Chem 1992; 38(5): 755–7

    PubMed  CAS  Google Scholar 

  61. Mahon WA, Holland J, Urowitz MB. Hyperosmolar, non-ketotic diabetic coma. CMAJ 1968; 99(22): 1090–2

    CAS  Google Scholar 

  62. Stevenson RE, Bowyer FP. Hyperglycemia with hyperosmolal dehydration in nondiabetic infants. J Pediatr 1970; 77(5): 818–23

    Article  PubMed  CAS  Google Scholar 

  63. Schelling JR, Howard RL, Winter SD, et al. Increased osmolal gap in alcoholic ketoacidosis and lactic acidosis. Ann Intern Med 1990; 113(8): 580–2

    PubMed  CAS  Google Scholar 

  64. Almaghamsi AM, Yeung CK. Osmolal gap in alcoholic ketoacidosis. Clin Nephrol 1997; 48(1): 52–3

    PubMed  CAS  Google Scholar 

  65. Braden GL, Strayhorn CH, Germain MJ, et al. Increased osmolal gap in alcoholic acidosis. Arch Intern Med 1993; 153(20): 2377–80

    Article  PubMed  CAS  Google Scholar 

  66. Sklar AH, Linas SL. The osmolal gap in renal failure. Ann Intern Med 1983; 98(4): 481–2

    PubMed  CAS  Google Scholar 

  67. Calhoun P. The osmolal gap in renal failure [letter]. Ann Intern Med 1983; 99(2): 283

    PubMed  CAS  Google Scholar 

  68. Mercier DE, Feld RD, Witte DL. Comparison of dewpoint and freezing point osmometry. Am J Med Technol 1978; 44(11): 1066–9

    PubMed  CAS  Google Scholar 

  69. Vader HL, Vink CL. The influence of viscosity on dilution methods: its problems in the determination of serum sodium. Clin Chim Acta 1975; 65(3): 379–88

    Article  PubMed  CAS  Google Scholar 

  70. Bevan DR. Osmometry, 1: terminology and principles of measurement. Anaesthesia 1978; 33(9): 794–800

    Article  PubMed  CAS  Google Scholar 

  71. Redetzki HM, Hughes JR, Redetzki JE. Differences between serum and plasma osmolalities and their relationship to lactic acid values. Proc Soc Exp Biol Med 1972; 139(1): 315–8

    PubMed  CAS  Google Scholar 

  72. Barlow WK. Volatiles and osmometry [letter]. Clin Chem 1976; 22(7): 1230–2

    PubMed  CAS  Google Scholar 

  73. Draviam EJ, Custer EM, Schoen I. Vapor pressure and freezing point osmolality measurements applied to a volatile screen. Am J Clin Pathol 1984; 82(6): 706–9

    PubMed  CAS  Google Scholar 

  74. Rocco RM. Volatiles and osmometry [letter]. Clin Chem 1976; 22(3): 399

    PubMed  CAS  Google Scholar 

  75. Walker JA, Schwartzbard A, Krauss EA, et al. The missing gap: a pitfall in the diagnosis of alcohol intoxication by osmometry. Arch Intern Med 1986; 146(9): 1843–4

    Article  PubMed  CAS  Google Scholar 

  76. Mattar JA, Weil MH, Shubin H. A study of the hyperosmolal state in critically ill patients. Crit Care Med 1973; 1(6): 293–301

    Article  PubMed  CAS  Google Scholar 

  77. Mattar JA, Weil MH, Shubin H, et al. Cardiac arrest in the critically ill, II: hyperosmolal states following cardiac arrest. Am J Med 1974; 56(2): 162–8

    Article  PubMed  CAS  Google Scholar 

  78. Raby PV, Hanson MJ, Henderson PJ. Implications of alcohol interference with direct ISE sodium determination on ethanol estimations from osmolal gap determinations [abstract]. Clin Chem 1993; 39: 1145

    Google Scholar 

  79. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; I(8476): 307–10

    Article  Google Scholar 

  80. Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies. Statistician 1983; 32: 307–11

    Article  Google Scholar 

Download references

Acknowledgements

None of the authors received any funding to assist in the preparation of the manuscript. None of the authors have any potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy A. Purssell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purssell, R.A., Lynd, L.D. & Koga, Y. The Use of the Osmole Gap as a Screening Test for the Presence of Exogenous Substances. Toxicol Rev 23, 189–202 (2004). https://doi.org/10.2165/00139709-200423030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200423030-00005

Keywords

Navigation