Skip to main content
Log in

Lipid Rescue Resuscitation from Local Anaesthetic Cardiac Toxicity

  • Review Article
  • Published:
Toxicological Reviews

Abstract

Systemic local anaesthetic toxicity is a rare but potentially fatal complication of regional anaesthesia. This toxicity is due to inhibition of ionotropic and metabotropic cell signal systems and possibly mitochondrial metabolism. It is associated with CNS excitation and, in the extreme, refractory cardiac dysfunction and circulatory collapse. Infusion of lipid emulsion has been shown in animal models to reliably reverse otherwise intractable cardiac toxicity and the mechanism of lipid rescue is probably a combination of reduced tissue binding by re-established equilibrium in a plasma lipid phase and a beneficial energetic-metabolic effect. Recent case reports have suggested the clinical efficacy of lipid infusion by the recovery of patients from intractable cardiac arrest. Future areas of investigation will focus on improved treatment regimes and better understanding of the mechanism of lipid rescue, which might allow superior alternative therapies, or treatment of other toxic events. An educational website has been established to help disseminate information about lipid emulsion therapy and to serve as a medium for physicians to share experiences or thoughts on the method and local anaesthetic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Table I

Similar content being viewed by others

References

  1. Weinberg GL. Current concepts in resuscitation of patients with local anesthetic cardiac toxicity. Reg Anesth Pain Med 2002; 27: 568–75

    PubMed  CAS  Google Scholar 

  2. Albright GA. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology 1979; 51: 285–7

    Article  PubMed  CAS  Google Scholar 

  3. Mulroy MF. Systemic toxicity and cardiotoxicity from local anesthetics: incidence and preventive measures. Reg Anesth Pain Med 2002; 27: 556–61

    PubMed  CAS  Google Scholar 

  4. Scott DB. Evaluation of clinical tolerance of local anaesthetic agents. Br J Anaesth 1975; 47 Suppl.: 328–31

    PubMed  Google Scholar 

  5. Scott DB, Lee A, Fagan D, et al. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989; 69: 563–9

    PubMed  CAS  Google Scholar 

  6. Morishima HO, Pedersen H, Finster M, et al. Bupivacaine toxicity in pregnant and nonpregnant ewes. Anesthesiology 1985; 63: 134–9

    Article  PubMed  CAS  Google Scholar 

  7. Groban L, Deal DD, Vernon JC, et al. Cardiac resuscitation after incremental overdosage with lidocaine, bupivacaine, levobupivacaine, and ropivacaine in anesthetized dogs. Anesth Analg 2001; 92: 37–43

    Article  PubMed  CAS  Google Scholar 

  8. Clarkson CW, Hondeghem LM. Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology 1985; 62: 396–405

    Article  PubMed  CAS  Google Scholar 

  9. Mio Y, Fukuda N, Kusakari Y, et al. Comparative effects of bupivacaine and ropivacaine on intracellular calcium transients and tension in ferret ventricular muscle. Anesthesiology 2004; 101: 888–94

    Article  PubMed  CAS  Google Scholar 

  10. Lynch C. Depression of myocardial contractility in vitro by bupivacaine, etidocaine, and lidocaine. Anesth Analg 1986; 65: 551–9

    PubMed  CAS  Google Scholar 

  11. Nietgen GW, Chan CK, Durieux ME. Inhibition of lysophosphatidate signaling by lidocaine and bupivacaine. Anesthesiology 1997; 86: 1112–9

    Article  PubMed  CAS  Google Scholar 

  12. Butterworth JF, Brownlow RC, Leith JP, et al. Bupivacaine inhibits cyclic-3′,5′-adenosine monophosphate production: a possible contributing factor to cardiovascular toxicity. Anesthesiology 1993; 79: 88–95

    Article  PubMed  Google Scholar 

  13. Courtney KR, Kendig JJ. Bupivacaine is an effective potassium channel blocker in heart. Biochim Biophys Acta 1988; 939: 163–6

    Article  PubMed  CAS  Google Scholar 

  14. Dabadie P, Bendriss P, Erny P, et al. Uncoupling effects of local anesthetics on rat liver mitochondria. FEBS Lett 1987; 226: 77–82

    Article  PubMed  CAS  Google Scholar 

  15. Sztark F, Malgat M, Dabadie P, et al. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics. Anesthesiology 1998; 88: 1340–9

    Article  PubMed  CAS  Google Scholar 

  16. Weinberg GL, Palmer JW, VadeBoncouer TR, et al. Bupivacaine inhibits acylcarnitine exchange in cardiac mitochondria. Anesthesiology 2000; 92: 523–8

    Article  PubMed  CAS  Google Scholar 

  17. Rosen MA, Thigpen JW, Shnider SM, et al. Bupivacaine-induced cardiotoxicity in hypoxic and acidotic sheep. Anesth Analg 1985; 64: 1089–96

    Article  PubMed  CAS  Google Scholar 

  18. Weinberg GL, Laurito CE, Geldner P, et al. Malignant ventricular dysrhythmias in a patient with isovaleric acidemia receiving general and local anesthesia for suction lipectomy. J Clin Anesth 1997; 9: 668–70

    Article  PubMed  CAS  Google Scholar 

  19. Indiveri C, Tonazzi A, Prezioso G, et al. Kinetic characterization of the reconstituted carnitine carrier from rat liver mitochondria. Biochim Biophys Acta 1991; 1065: 231–8

    Article  PubMed  CAS  Google Scholar 

  20. Rubio-Gozalbo ME, Vos P, Forget PP, et al. Carnitine-acylcarnitine translocase deficiency: case report and review of the literature. Acta Paediatr 2003; 92: 501–4

    Article  PubMed  CAS  Google Scholar 

  21. Weinberg GL, VadeBoncouer T, Ramaraju GA, et al. Pretreatment or resuscitation with a lipid infusion shifts the dose-response to bupivacaine-induced asystole in rats. Anesthesiology 1998; 88: 1071–5

    Article  PubMed  CAS  Google Scholar 

  22. Weinberg G, Ripper R, Feinstein DL, et al. Lipid emulsion infusion rescues dogs from bupivacaine-induced cardiac toxicity. Reg Anesth Pain Med 2003; 28: 198–202

    PubMed  CAS  Google Scholar 

  23. Groban L, Butterworth J. Lipid reversal of bupivacaine toxicity: has the silver bullet been identified? Reg Anesth Pain Med 2003; 28: 167–9

    PubMed  CAS  Google Scholar 

  24. Weinberg GL, Ripper R, Murphy P, et al. Lipid infusion accelerates removal of bupivacaine and recovery from bupivacaine toxicity in the isolated rat heart. Reg Anesth Pain Med 2006; 31: 296–303

    PubMed  CAS  Google Scholar 

  25. Collins-Nakai RL, Noseworthy D, Lopaschuk GD. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Am J Physiol 1994; 267: H1862–71

    PubMed  CAS  Google Scholar 

  26. Eledjam JJ, de La Coussaye JE, Brugada J, et al. In vitro study on mechanisms of bupivacaine-induced depression of myocardial contractility. Anesth Analg 1989; 69: 732–5

    Article  PubMed  CAS  Google Scholar 

  27. Van de Velde M, Wouters PF, Rolf N, et al. Long-chain triglycerides improve recovery from myocardial stunning in conscious dogs. Cardiovasc Res 1996; 32: 1008–15

    Article  PubMed  Google Scholar 

  28. Van de Velde M, DeWolff M, Leather HA, et al. Effects of lipids on the functional and metabolic recovery from global myocardial stunning in isolated rabbit hearts. Cardiovasc Res 2000; 48: 129–37

    Article  PubMed  Google Scholar 

  29. Stehr SN, Ziegler J, Pexa A, et al. Lipid effects on myocardial function in L-bupivacaine induced toxicity in the isolated rat heart [abstract]. Reg Anesth Pain Med 2005; 30: 5

    Article  Google Scholar 

  30. Cho HS, Lee JJ, Chung IS, et al. Insulin reverses bupivacaine-induced cardiac depression in dogs. Anesth Analg 2000; 91: 1096–102

    PubMed  CAS  Google Scholar 

  31. Kim JT, Jung CW, Lee KH. The effect of insulin on the resuscitation of bupivacaine-induced severe cardiovascular toxicity in dogs. Anesth Analg 2004; 99: 728–33

    Article  PubMed  CAS  Google Scholar 

  32. Weinberg G, VadeBoncouer T. Improved energetics may explain the favorable effect of insulin infusion on bupivacaine cardiotoxicity. Anesth Analg 2001; 92: 1075–6

    Article  PubMed  CAS  Google Scholar 

  33. Renehan EM, Enneking FK, Varshney M, et al. Scavenging nanoparticles: an emerging treatment for local anesthetic toxicity. Reg Anesth Pain Med 2005; 30: 380–4

    PubMed  CAS  Google Scholar 

  34. Picard J, Meek T. A response to ‘lipid emulsion to treat bupivacaine toxicity’. Anaesthesia 2005; 60: 1158

    Article  PubMed  CAS  Google Scholar 

  35. Rosenblatt MA, Abel M, Fischer GW, et al. Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest. Anesthesiology 2006; 105: 217–8

    Article  PubMed  Google Scholar 

  36. Litz RJ, Popp M, Stehr SN, et al. Successful resuscitation of a patient with ropivacaine-induced asystole after axillary plexus block using lipid infusion. Anaesthesia 2006; 61: 800–1

    Article  PubMed  CAS  Google Scholar 

  37. Ohmura S, Ohta T, Yamamoto K, et al. A comparison of the effects of propofol and sevoflurane on the systemic toxicity of intravenous bupivacaine in rats. Anesth Analg 1999; 88: 155–9

    PubMed  CAS  Google Scholar 

  38. Barson AJ, Chistwick ML, Doig CM. Fat embolism in infancy after intravenous fat infusions. Arch Dis Child 1978; 53: 218–23

    Article  PubMed  CAS  Google Scholar 

  39. Corcoran W, Beck JM, Gerancher J, et al. Local anesthetic-induced cardiac toxicity: a survey of contemporary practice strategies among academic anesthesiology departments [abstract]. Anesth Analg 2006; 102: S–316

    Google Scholar 

  40. Cave G, Harvey M, Castle C. The role of fat emulsion therapy in a rodent model of propranolol toxicity: a preliminary study. Med Toxicol 2006; 2: 4–7

    Article  Google Scholar 

  41. Minton N, Goode A, Henry J. The effect of a lipid suspension on amitryptiline disposition. Arch Toxicol 1987; 60: 467–9

    Article  PubMed  CAS  Google Scholar 

  42. LipidRescue™: resuscitation for local anesthetic toxicity [online]. Available from URL: http://www.lipidrescue.org [Accessed 2006 Oct 5]

Download references

Acknowledgements

The preparation of this review was funded in part by grant NIH R21DA17892. The author has applied for a patent describing certain aspects of this method. A patent has not been granted and no patent licensing arrangements have been made. The author does not have equity interests or stocks in any commercial institution related to this method and does not intend to prohibit or restrict the practice of this method on any patient requiring treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Weinberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinberg, G. Lipid Rescue Resuscitation from Local Anaesthetic Cardiac Toxicity. Toxicol Rev 25, 139–145 (2006). https://doi.org/10.2165/00139709-200625030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200625030-00001

Keywords

Navigation