Skip to main content
Log in

Pharmacokinetic and Pharmacodynamic Perspectives on the Clinical Drug Development of Panitumumab

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Panitumumab is a recombinant, fully human IgG2 monoclonal antibody directed against the epidermal growth factor receptor (EGFR). It is indicated for use as monotherapy in the treatment of patients with EGFR-expressing metastatic colorectal cancer after disease progression with standard chemotherapy. The currently indicated dose is 6mg/kg given every 2 weeks.

Panitumumab is mainly distributed into the vascular space and exhibits nonlinear pharmacokinetics that are consistent with target-mediated drug disposition, involving saturable binding to EGFR and subsequent internalization and degradation inside the cells. Panitumumab is also cleared in a linear fashion by the reticuloendothelial system, similarly to other endogenous immunoglobulins. After single-dose administration of panitumumab as a 1-hour intravenous infusion, the area under the serum concentration-time curve increases in a greater-than-dose-proportional manner asthe dose increases from 0.75 to 5mg/kg; however, at doses above 2mg/kg, the exposure to panitumumab increases in a dose-proportional manner. Panitumumab pharmacokinetics are not meaningfully affected by the tumour type, EGFR membrane expression, tumour KRAS mutation, sex, age, race or renal or hepatic dysfunction. In addition, irinotecan-containing and paclitaxel/carboplatin-containing chemotherapeutic regimens do not appear to affect panitumumab pharmacokinetics. The results of population pharmacokinetic analyses have shown that bodyweight is the most influential covariate on panitumumab exposure, supporting the current use of bodyweight-adjusted doses (mg/kg). The relationship between the weekly dose of panitumumab and skin rash, an on-target pharmacodynamic effect of EGFR inhibition, reaches a plateau at 2.5 mg/kg, indicating that this is the optimal weekly dose. Two less-frequent dosing regimens (6 mg/kg given every 2 weeks and 9mg/kg given every 3 weeks) achieve steady-state serum trough concentrations similar to those achievedby 2.5mg/kg given every week, ensuring maximal EGFR coverage. Anti-panitumumab antibody production is uncommon and does not appear to have an impact on the pharmacokinetics of panitumumab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Table II

Similar content being viewed by others

References

  1. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001 Feb; 2(2): 127–37

    Article  PubMed  CAS  Google Scholar 

  2. Rowinsky EK. The erbB family: targets for therapeutic development against cancer and therapeutic strategies using monoclonal antibodies and tyrosine kinase inhibitors. Annu Rev Med 2004 Feb; 55: 433–57

    Article  PubMed  CAS  Google Scholar 

  3. Sibilia M, Kroismayr R, Lichtenberger B, et al. The epidermal growth factor receptor: from development to tumorigenesis. Differentiation 2007 Nov; 75(9): 770–87

    Article  PubMed  CAS  Google Scholar 

  4. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005 May; 5(5): 341–54

    Article  PubMed  CAS  Google Scholar 

  5. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 2006 Sep 15; 12(18): 5268–72

    Article  PubMed  CAS  Google Scholar 

  6. Salomon DS, Brandt R, Ciardello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995 July; 19(3): 183–232

    Article  PubMed  CAS  Google Scholar 

  7. Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 2005 Apr 10; 23(11): 2445–59

    Article  PubMed  CAS  Google Scholar 

  8. Harari PM, Allen GW, Bonner JA. Biology of interactions: antiepidermal growth factor receptor agents. J Clin Oncol 2007 Sept 10; 25(6): 4057–65

    Article  PubMed  CAS  Google Scholar 

  9. Rivera F, Vega-Villegas ME, Lopez-Brea MF, et al. Current situation of panitumumab, matuzumab, nimotuzumab, and zalutumumab. Acta Oncol 2008 Jan; 47(1): 9–19

    Article  PubMed  CAS  Google Scholar 

  10. Talavera A, Friemann R, Gómez-Puerta S, et al. Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation. Cancer Res 2009 Jul 15; 69(14): 5851–9

    Article  PubMed  CAS  Google Scholar 

  11. Yang XD, Jia XC, Corvalan JR, et al. Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res 1999 Mar 15; 59(6): 1236–43

    PubMed  CAS  Google Scholar 

  12. Foon KA, Yang XD, Weiner LM, et al. Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys 2004 Mar 1; 58(3): 984–90

    Article  PubMed  CAS  Google Scholar 

  13. Yang XD, Jia XC, Corvalan JR, et al. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 2001 Apr; 38(1): 17–23

    Article  PubMed  CAS  Google Scholar 

  14. Weiner LM, Belldegrun AS, Crawford J, et al. Dose and schedule study of panitumumab monotherapy in patients with advanced solid malignancies. Clin Cancer Res 2008 Jan 15; 14(2): 502–8

    Article  PubMed  CAS  Google Scholar 

  15. Stephenson JJ, Gregory C, Burris H, et al. An open-label clinical trial evaluating safety and pharmacokinetics of two dosing schedules of panitumumab in patients with solid tumors. Clin Colorectal Cancer 2009 Jan; 8(1): 29–37

    Article  PubMed  CAS  Google Scholar 

  16. Rowinsky EK, Schwartz GH, Gollob JA, et al. Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. J Clin Oncol 2004 Aug 1; 22(15): 3003–15

    Article  PubMed  CAS  Google Scholar 

  17. Crawford J, Swanson P, Prager D, et al. Panitumumab, a fully human antibody, combined with paclitaxel and carboplatin versus paclitaxel and carboplatin alone for first-line advanced non-small-cell lung cancer (NSCLC): a primary analysis [abstract no. 1123]. European Journal of Cancer Supplements 2005; 3(2): 324

    Google Scholar 

  18. Hecht JR, Patnaik A, Berlin J, et al. Panitumumab monotherapy in patients with previously treated metastatic colorectal cancer. Cancer 2007 Sep 1; 110(5): 980–8

    Article  PubMed  CAS  Google Scholar 

  19. Berlin J, Posey J, Tchekmedyian S, et al. Panitumumab with irinotecan/ leucovorin/5-fluorouracil for first-line treatment of metastatic colorectal cancer. Clin Colorectal Cancer 2007 Mar; 6(6): 427–32

    Article  PubMed  CAS  Google Scholar 

  20. Malik I, Hecht JR, Patnaik A, et al. Safety and efficacy of panitumumab monotherapy in patients with metastatic colorectal cancer (mCRC) [abstract no. 3520]. J Clin Oncol 2005; 23(16S): 3520 [online]. Available from URL: http://meeting.ascopubs.org/cgi/content/abstract/23/16_suppl/3520 [Accessed 2010 Jul 29]

    Google Scholar 

  21. Hecht JR, Mitchell E, Neubauer MA, et al. Lack of correlation between epidermal growth factor receptor status and response to panitumumab monotherapy in metastatic colorectal cancer. Clin Cancer Res 2010 Apr 1; 16(7): 2205–13

    Article  PubMed  CAS  Google Scholar 

  22. Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 2007 May 1; 25(13): 1658–64

    Article  PubMed  Google Scholar 

  23. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003 Jan; 3(1): 11–22

    Article  PubMed  CAS  Google Scholar 

  24. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007 Apr; 7(4): 295–308

    Article  PubMed  CAS  Google Scholar 

  25. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008 Apr 1; 26(10): 1626–34

    Article  PubMed  CAS  Google Scholar 

  26. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 2007 Mar 15; 67(6): 2643–8

    Article  PubMed  CAS  Google Scholar 

  27. De Roock W, Piessevaux H, De Schutter J, et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 2008 Mar; 19(3): 508–15

    Article  PubMed  Google Scholar 

  28. Vectibix® (panitumumab): package insert. Thousand Oaks (CA): Amgen Inc., 2010

  29. Erbitux® (cetuximab): package insert. New York: ImClone LLC, and Princeton (NJ): Bristol-Myers Squibb, 2010 Mar

  30. Douillard J, Siena S, Cassidy J, et al. Randomized phase 3 study of panitumumab with FOLFOX4 vs FOLFOX4 alone as first-line treatment in patients with metastatic colorectal cancer: the PRIME trial [abstract no. LBA 10]. Annual Congress, European Cancer Organisation and European Society for Medical Oncology; 2009 Sep 20–24; Berlin

    Google Scholar 

  31. Peeters M, Price T, Hotko Y, et al. Randomized phase 3 study of panitumumab with FOLFIRI vs FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer [abstract no. LBA 14]. Annual Congress, European Cancer Organisation and European Society for Medical Oncology; 2009 Sep 20–24; Berlin

    Google Scholar 

  32. Peeters M, Price T, Van Laethem J. Anti-epidermal growth factor receptor monotherapy in the treatment of metastatic colorectal cancer: where are we today? Oncologist 2009 Jan; 14(3): 29–39

    Article  PubMed  CAS  Google Scholar 

  33. Ma P, Yang BB, Wang YM, et al. Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol 2009 Oct; 49(10): 1142–56

    Article  PubMed  CAS  Google Scholar 

  34. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993 Jul; 10(7): 1093–5

    Article  PubMed  CAS  Google Scholar 

  35. Wiig H, Tenstad O. Interstitial exclusion of positively and negatively charged IgG in rat skin and muscle. Am J Physiol Heart Circ Physiol 2001 Apr; 280(4): H1505–12

    PubMed  CAS  Google Scholar 

  36. Leveque D, Wisniewski S, Jehl F. Pharmacokinetics of therapeutic monoclonal antibodies used in oncology. Anticancer Res 2005 May–Jun; 25(3c): 2327–43

    PubMed  CAS  Google Scholar 

  37. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 2004 Nov; 93(11): 2645–68

    Article  PubMed  CAS  Google Scholar 

  38. Roskos LK, Davis CG, Schwab GM. The clinical pharmacology of therapeutic monoclonal antibodies. Drug Dev Res 2004; 61: 108–20

    Article  CAS  Google Scholar 

  39. Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 2006 Jan; 11(1–2): 81–8

    Article  PubMed  CAS  Google Scholar 

  40. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 2008 Nov; 84(5): 548–58

    Article  PubMed  CAS  Google Scholar 

  41. Baselga J, Pfister D, Cooper MR, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cis-platin. J Clin Oncol 2000 Feb; 18(4): 904–14

    PubMed  CAS  Google Scholar 

  42. Dirks NL, Nolting A, Kovar A, et al. Population pharmacokinetics of cetuximab in patients with squamous cell carcinoma of the head and neck. J Clin Pharmacol 2008 Mar; 48(3): 267–78

    Article  PubMed  CAS  Google Scholar 

  43. Tan AR, Moore DF, Hidalgo M, et al. Pharmacokinetics of cetuximab after administration of escalating single dosing and weekly fixed dosing in patients with solid tumors. Clin Cancer Res 2006 Nov 1; 12(21): 6517–22

    Article  PubMed  CAS  Google Scholar 

  44. Nolting A, Fox FE, Kovar A. Clinical drug development of cetixumab, a monoclonal antibody. In: Meibohm E, editor. Pharmacokinetics and pharmacodynamics of biotech drugs: principles and case studies in drug development. Weinheim: Wiley-VCH Verlag GmbH, 2006: 354–7

    Google Scholar 

  45. Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog Allergy 1969; 13: 1–110

    PubMed  CAS  Google Scholar 

  46. Kennecke H, Wu CY, Chen E, et al. Concomitant use of panitumumab (Pmab) had no clinically significant effect on irinotecan (Iri) pharmacokinetics (PK) [abstract no. LB-75]. 101st Annual Meeting, American Association for Cancer Research; 2010 Apr 17–21; Washington DC [online]. Available from URL: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=fae5a7bd-1238-4a6a-87a2-f37845319f42&cKey=958b7716-86f1-4ff5-bddf-eb8363c34ede&mKey=%7b0591FA3B-AFEF-49D2-8E65-55F41EE8117E%7d [Accessed 2010 Aug 12]

    Google Scholar 

  47. Arnold D, Hohler T, Dittrich C, et al. Cetuximab in combination with weekly 5-fluorouracil/folinic acid and oxaliplatin (FUFOX) in untreated patients with advanced colorectal cancer: a phase Ib/II study of the AIO GI Group. Ann Oncol 2008 Aug; 19(8): 1442–9

    Article  PubMed  CAS  Google Scholar 

  48. Delbaldo C, Pierga JY, Dieras V, et al. Pharmacokinetic profile of cetuximab (Erbitux) alone and in combination with irinotecan in patients with advanced EGFR-positive adenocarcinoma. Eur J Cancer 2005 Aug; 41(12): 1739–45

    Article  PubMed  CAS  Google Scholar 

  49. Lofgren JA, Dhandapani S, Pennucci JJ, et al. Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab. J Immunol 2007 June 1; 78(11): 7467–72

    Google Scholar 

  50. Data on file, Amgen Inc., 2010

  51. O’Neil BH, Allen R, Spigel DR, et al. High incidence of cetuximab-related infusion reactions in Tennessee and North Carolina and the association with atopic history. J Clin Oncol 2007; 25: 3644–8

    Article  PubMed  Google Scholar 

  52. Chung CH, Mirakhur B, Chan E, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 2008; 358: 1109–17

    Article  PubMed  CAS  Google Scholar 

  53. Lacouture ME. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer 2006 Oct; 6(10): 803–12

    Article  PubMed  CAS  Google Scholar 

  54. Li T, Perez-Soler R. Skin toxicities associated with epidermal growth factor receptor inhibitors. Targ Oncol 2009 May 19; 4(2): 107–19

    Article  Google Scholar 

  55. Baselga J. Skin as asurrogate tissue for pharmacodynamic end points: is it deep enough? Clin Cancer Res 2003 July; 9(7): 2389–90

    PubMed  Google Scholar 

  56. Perez-Soler R, Van Cutsem E. Clinical researchofEGFR inhibitors and related dermatologic toxicities. Oncology 2007 Oct; 21 (11 Suppl. 5): 10–6

    PubMed  Google Scholar 

  57. Perez-Soler R, Saltz L. Cutaneous adverse effects with HER1/EGFR-targeted agents: is there a silver lining? J Clin Oncol 2005 Aug 1; 23(22): 5235–46

    Article  PubMed  Google Scholar 

  58. Peeters M, Siena S, Van Cutsem E, et al. Association of progression-free survival, overall survival, and patient-reported outcomes by skin toxicity and KRAS status in patients receiving panitumumab monotherapy. Cancer 2009 Apr 1; 115(7): 1544–54

    Article  PubMed  CAS  Google Scholar 

  59. Segaert S, Tabernero J, Chosidow O, et al. The managementofskin reactions in cancer patients receiving epidermal growth factor receptor targeted therapies. J Dtsch Dermatol Ges 2005 Aug; 3(8): 599–606

    Article  PubMed  Google Scholar 

  60. Shah NT, Kris MG, Pao W, et al. Practical management of patients with nonsmall-cell lung cancer treated with gefitinib. J Clin Oncol 2005 Jan 1; 23(1): 165–74

    Article  PubMed  CAS  Google Scholar 

  61. Fracasso PM, Burris H, Arquette MA, et al. A phase 1 escalating single-dose and weekly fixed-dose study of cetuximab: pharmacokinetic and pharmacodynamic rationale for dosing. Clin Cancer Res 2007 Feb 1; 13(3): 986–93

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Irene Durham for editorial support for this review article on behalf of Research Pharmaceutical Services, Inc., whose work was funded by Amgen Inc., Thousand Oaks, CA, USA. Rosalin Arends now is an employee of Pfizer Inc., New London, CT, USA. Lorin Roskos now is an employee for MedImmune, Inc., Gaithersburg, MD, USA. All other authors are employees of Amgen Inc. and hold shares of Amgen Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Bing Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, BB., Lum, P., Chen, A. et al. Pharmacokinetic and Pharmacodynamic Perspectives on the Clinical Drug Development of Panitumumab. Clin Pharmacokinet 49, 729–740 (2010). https://doi.org/10.2165/11535970-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11535970-000000000-00000

Keywords

Navigation