Skip to main content

Advertisement

Log in

Two Emerging Concepts for Elite Athletes

The Short-Term Effects of Testosterone and Cortisol on the Neuromuscular System and the Dose-Response Training Role of these Endogenous Hormones

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The aim of this review is to highlight two emerging concepts for the elite athlete using the resistance-training model: (i) the short-term effects of testosterone (T) and cortisol (C) on the neuromuscular system; and (ii) the dose-response training role of these endogenous hormones. Exogenous evidence confirms that T and C can regulate long-term changes in muscle growth and performance, especially with resistance training. This evidence also confirms that changes in T or C concentrations can moderate or support neuromuscular performance through various short-term mechanisms (e.g. second messengers, lipid/protein pathways, neuronal activity, behaviour, cognition, motor-system function, muscle properties and energy metabolism). The possibility of dual T and C effects on the neuromuscular system offers a new paradigm for understanding resistance-training performance and adaptations.

Endogenous evidence supports the short-term T and C effects on human performance. Several factors (e.g. workout design, nutrition, genetics, training status and type) can acutely modify T and/or C concentrations and thereby potentially influence resistance-training performance and the adaptive outcomes. This novel short-term pathway appears to be more prominent in athletes (vs non-athletes), possibly due to the training of the neuromuscular and endocrine systems. However, the exact contribution of these endogenous hormones to the training process is still unclear. Research also confirms a dose-response training role for basal changes in endogenous T and C, again, especially for elite athletes. Although full proof within the physiological range is lacking, this athlete model reconciles a proposed permissive role for endogenous hormones in untrained individuals. It is also clear that the steroid receptors (cell bound) mediate target tissue effects by adapting to exercise and training, but the response patterns of the membrane-bound receptors remain highly speculative.

This information provides a new perspective for examining, interpreting and utilizing T and C within the elite sporting environment. For example, individual hormonal data may be used to better prescribe resistance exercise and training programmes or to assess the trainability of elite athletes. Possible strategies for acutely modifying the hormonal milieu and, thereafter, the performance/training outcomes were also identified (see above). The limitations and challenges associated with the analysis and interpretation of hormonal research in sport (e.g. procedural issues, analytical methods, research design) were another discussion point. Finally, this review highlights the need for more experimental research on humans, in particular athletes, to specifically address the concept of dual steroid effects on the neuromuscular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I

Similar content being viewed by others

References

  1. Kraemer WJ, Adams K, Cafarelli E, et al. American College of Sports Medicine position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc 2002; 34 (2): 364–80

    Article  PubMed  Google Scholar 

  2. Kraemer WJ, Duncan ND, Volek JS. Resistance training and elite athletes: adaptations and program considerations. J Orthop Sport Phys 1998; 28 (2): 110–9

    CAS  Google Scholar 

  3. Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 2007; 37 (2): 145–68

    Article  PubMed  Google Scholar 

  4. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med 2005; 35 (4): 339–61

    Article  PubMed  Google Scholar 

  5. Kraemer WJ, Mazzetti SA. Hormonal mechanisms related to the expression of muscular strength and power. In: Komi PV, editor. Strength and power in sport. Boston(MA): Blackwell Scientific Publishing, 2003: 73–95

    Chapter  Google Scholar 

  6. Crewther B, Keogh J, Cronin J, et al. Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med 2006; 36 (3): 215–38

    Article  PubMed  Google Scholar 

  7. Viru A, Viru M. Preconditioning of the performance in power events by endogenous testosterone: in memory of Professor Carmelo Bosco. J Strength Cond Res 2005; 19 (1): 6–8

    PubMed  Google Scholar 

  8. Makara GB, Haller J. Non-genomic effects of glucocorticoids in the neural system. Prog Neurobiol 2001; 65 (4): 367–90

    Article  PubMed  CAS  Google Scholar 

  9. Joëls M. Steroid hormones and excitability in the mammalian brain. Front Neuroendocrin 1997; 18 (1): 2–48

    Article  Google Scholar 

  10. Falkenstein E, Tillman HC, Christ M, et al. Multiple actions of steroid hormones: a focus on rapid, nongenomic effects. Pharmacol Rev 2000; 52 (4): 513–55

    PubMed  CAS  Google Scholar 

  11. West DW, Burd NA, Tang JE, et al. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol 2010; 108 (1): 60–7

    Article  PubMed  Google Scholar 

  12. West DW, Kujbida GW, Moore DR, et al. Resistance exercise- induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol 2009; 587 (21): 5239–47

    Article  PubMed  CAS  Google Scholar 

  13. Buresh R, Berg K, French J. The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. J Strength Cond Res 2009; 23 (1): 62–71

    Article  PubMed  Google Scholar 

  14. Wilkinson SB, Tarnopolsky MA, Grant EJ, et al. Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol 2006; 98 (6): 546–55

    Article  PubMed  CAS  Google Scholar 

  15. Ahtiainen JP, Pakarinen A, Alén M, et al. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrainedmen. Eur J Appl Physiol 2003; 89 (6): 555–63

    Article  PubMed  CAS  Google Scholar 

  16. Tremblay MS, Copeland JL, Van Helder W. Effect of training status and exercise mode on endogenous steroid hormones in men. J Appl Physiol 2004; 96 (2): 531–9

    Article  PubMed  CAS  Google Scholar 

  17. Ahtiainen JP, Pakarinen A, Kraemer WJ, et al. Acute hormonal responses to heavy resistance exercise in strength athletes versus nonathletes. Can J Appl Physiol 2004; 29 (5): 527–43

    Article  PubMed  CAS  Google Scholar 

  18. Semmler JG, Nordstrom MA. Motor unit discharge and force tremor in skill- and strength-trained individuals. Exp Brain Res 1998; 119 (1): 27–38

    Article  PubMed  CAS  Google Scholar 

  19. Ryushi T, Häkkinen K, Kauhanen H, et al. Muscle fibre characteristics, muscle cross-sectional area and force production in strength athletes, physically active males and females. Scand J Sport Sci 1988; 10 (1): 7–15

    Google Scholar 

  20. Lucía A, Chicharro JL, Pérez M, et al. Reproductive function in male endurance athletes: sperm analysis and hormonal profile. J Appl Physiol 1996; 81 (6): 2627–36

    PubMed  Google Scholar 

  21. Enoka RM. The motor system: multi-joint systems: chapter 7. In: Neuromechanics of human movement, 2002: 313–58

    Google Scholar 

  22. Enoka RM. The motor system: single-joint system function: chapter 6. In: Neuromechanics of human movement. 3rd ed. Champaign (IL): Human Kinetics, 2002: 241–312

    Google Scholar 

  23. Brown M, Fisher JS, Hasser EM. Gonadectomy and reduced physical activity: effects on skeletal muscle. Arch Phys Med Rehab 2001; 82 (1): 93–7

    Article  CAS  Google Scholar 

  24. Axell AM, MacLean HE, Plant DR, et al. Continuous administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. Am J Physiol Endocrinol Metab 2006; 291 (3): E506–16

    Article  PubMed  CAS  Google Scholar 

  25. Krotkiewski M, Kral JG, Karlsson J. Effects of castration and testosterone substitution on body composition and muscle metabolism in rats. Acta Physiol Scand 1980; 109 (3): 233–7

    Article  PubMed  CAS  Google Scholar 

  26. Ustunel I, Akkoyunlu G, Demir R. The effect of testosterone on gastrocnemius muscle fibres in growing and adult male and female rats: a histochemical, morphometric and ultrastructural study. Anat Histol Embryol 2003; 32 (2): 70–9

    Article  PubMed  CAS  Google Scholar 

  27. Gregory CM, Vandenborne K, Huang HF, et al. Effects of testosterone replacement therapy on skeletal muscle after spinal cord injury. Spinal Cord 2003; 41 (1): 23–8

    Article  PubMed  CAS  Google Scholar 

  28. Souccar C, Lapa AJ, Valle J. Influence of castration on the electrical excitability and contraction properties of the ratlevator ani muscle. Exp Neurol 1982; 75 (3): 576–88

    Article  PubMed  CAS  Google Scholar 

  29. Lubischer JL, Arnold AP. Axotomy of developing rat spinal motoneurons: cell survival, soma size, muscle recovery, and the influence of testosterone. J Neurobiol 1995; 26 (2): 225–40

    Article  PubMed  CAS  Google Scholar 

  30. Czerwinski SM, Zak R, Kurowski TT, et al. Myosin heavy chain turnover and glucocorticoid deterrence by exercise in muscle. J Appl Physiol 1989; 67 (6): 2311–5

    PubMed  CAS  Google Scholar 

  31. Falduto MT, Czerwinski SM, Hickson RC. Glucocorticoid- induced muscle atrophy prevention by exercise in fast-twitch fibers. J Appl Physiol 1990; 69 (3): 1058–62

    PubMed  CAS  Google Scholar 

  32. Fimbel S, Abdelmalki A, Mayet MH, et al. Exercise training fails to prevent glucocorticoid-induced muscle alterations in young growing rats. Pflüg Arch Eur J Phy 1993; 424 (5-6): 369–76

    Article  CAS  Google Scholar 

  33. Nakago K, Senda M, Touno M, et al. Influence of exercise on muscle fibers in rats with steroid myopathy. Acta Medica Okayama 1999; 53 (6): 265–70

    PubMed  CAS  Google Scholar 

  34. Friedl KE, Dettori JR, Hannan CJ, et al. Comparison of the effects of high dose testosterone and 19-nortestosteroneto a replacement dose of testosterone on strength and body composition in normal men. J Steroid Biochem 1991; 40 (4-6): 607–12

    Article  CAS  Google Scholar 

  35. Bhasin S, Woodhouse L, Casaburi R, et al. Testosterone dose-response relationships in healthy young men. Am J Physiol-Endoc M 2001; 281 (6): E1172–81

    Google Scholar 

  36. Sinha-Hikim I, Artaza J, Woodhouse L, et al. Testosterone- induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am JPhysiol-Endoc M 2002; 283 (1): E154–64

    CAS  Google Scholar 

  37. Sinha-Hikim I, Cornford M, Gaytan H, et al. Effects of testosterone supplementation on skeletal muscle fibrehypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab 2006; 91 (8): 3024–33

    Article  PubMed  CAS  Google Scholar 

  38. Woodhouse LJ, Reisz-Porszasz S, Javanbakht M, et al. Development of models to predict anabolic responseto testosterone administration in healthy young men. Am J Physiol-Endoc M 2003; 284 (5): E1009–17

    CAS  Google Scholar 

  39. Bhasin S, Storer TW, Berman N, et al. Testosterone replacement increases fat-free mass and muscle size in hypogonadalmen. J Clin Endocrinol Metab 1997; 82 (2): 407–13

    Article  PubMed  CAS  Google Scholar 

  40. Wang C, Swerdloff RS, Iranmanesh A, et al. Transdermal testosterone gel improves sexual function, mood, musclestrength, and body composition parameters in hypogonadalmen. J Clin Endocrinol Metab 2000; 85 (8): 2839–53

    Article  PubMed  CAS  Google Scholar 

  41. McNurlan MA, Sandgren A, Hunter K, et al. Protein synthesis rates of skeletal muscle, lymphocytes, and albumin with stress hormone infusion in healthy man. Metabolism 1996; 45 (11): 1388–94

    Article  PubMed  CAS  Google Scholar 

  42. Brillon DJ, Zheng B, Campbell RG, et al. Effect of cortisol on energy expenditure and amino acid metabolism in humans. Am J Physiol 1995; 268 (3Pt1): E501–13

    Google Scholar 

  43. Ferrando AA, Stuart CA, Sheffield-Moore M, et al. Inactivity amplifies the catabolic response of skeletal muscle to cortisol. J Clin Endocrinol Metab 1999; 84 (10): 3515–21

    Article  PubMed  CAS  Google Scholar 

  44. Fitts RH, Romatowski JG, Peters JR, et al. The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am J Physiol Cell Physiol 2007; 293 (1): C313–20

    Article  CAS  Google Scholar 

  45. Salehian B, Kejriwal K. Glucocorticoid-induced muscle atrophy: mechanisms and therapeutic strategies. Endocr Pract 1999; 5 (5): 277–81

    PubMed  CAS  Google Scholar 

  46. Herbst KL, Bhasin S. Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care 2004; 7 (3): 271–7

    Article  PubMed  CAS  Google Scholar 

  47. Viru A, Viru M. Cortisol-essential adaptation hormone in exercise. Int J Sports Med 2004; 25 (6): 461–4

    Article  PubMed  CAS  Google Scholar 

  48. Bruce SA, Phillips SK, Woledge RC. Interpreting the relation between force and cross-sectional area in human muscle. Med Sci Sports Exerc 1997; 29 (5): 677–83

    Article  PubMed  CAS  Google Scholar 

  49. Storer TW, Magliano L, Woodhouse L, et al. Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J Clin Endocrinol Metab 2003; 88 (4): 1478–85

    Article  PubMed  CAS  Google Scholar 

  50. Bhasin S, Storer TW, Berman N, et al. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 1996; 335 (1): 1–7

    Article  PubMed  CAS  Google Scholar 

  51. Rogerson S, Weatherby RP, Deakin GB, et al. The effect of short-term use of testosterone enanthate on muscular strength and power in healthy young men. J StrengthCond Res 2007; 21 (2): 354–62

    PubMed  Google Scholar 

  52. Blazevich AJ, Giorgi A. Effect of testosterone administration and weight training on muscle architecture. Med Sci Sports Exerc 2001; 33 (10): 1688–93

    Article  PubMed  CAS  Google Scholar 

  53. Kvorning T, Andersen M, Brixen K, et al. Suppression of endogenous testosterone production attenuates the response to strength training: a randomized, placebocontrolled, and blinded intervention study. Am J Physiol Endocrinol Metab 2006; 291 (6): E1325–32

    Article  CAS  Google Scholar 

  54. Czerwinski SM, Kurowski TG, O’Neill TM, et al. Initiating regular exercise protects against muscle atrophy fromglucocorticoids. J Appl Physiol 1987; 63 (4): 1504–10

    PubMed  CAS  Google Scholar 

  55. Staron RS, Karapondo DL, Kraemer WJ, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 1994; 76 (3): 1247–55

    PubMed  CAS  Google Scholar 

  56. Moritani MA, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 1979; 58 (3): 115–30

    PubMed  CAS  Google Scholar 

  57. Hickson RC, Hidaka K, Foster C, et al. Successive time courses of strength development and steroid hormone responses to heavy-resistance training. J Appl Physiol 1994; 76 (2): 663–70

    PubMed  CAS  Google Scholar 

  58. Komi P. Training of muscle strength and power: interaction of neuromotoric, hypertrophic, and mechanical factors. Int J Sports Med 1986; 7 (1Suppl.): 10–5

    Article  PubMed  Google Scholar 

  59. Abe T, DeHoyos D, Pollock ML, et al. Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol 2000; 81 (3): 174–80

    Article  PubMed  CAS  Google Scholar 

  60. Kurz EM, Sengelaub DR, Arnold AP. Androgens regulate the dendritic length of mammalian motoneurons in adulthood. Science 1986; 232 (4748): 395–8

    Article  PubMed  CAS  Google Scholar 

  61. Fargo KN, Sengelaub DR. Testosterone manipulation protects motoneurons from dendritic atrophy after contralateralmotoneuron depletion. J Comp Neurol 2004; 469 (1): 96–106

    Article  PubMed  CAS  Google Scholar 

  62. Matsumoto A, Micevych PE, Arnold AP. Androgen regulates synaptic input to motoneurons of the adult rat spinal cord. J Neurosci 1988; 8 (11): 4168–76

    PubMed  CAS  Google Scholar 

  63. Breedlove SM, Arnold AP. Sexually dimorphic motor nucleus in the rat lumbar spinal cord: response to adult hormone manipulation, absence in androgen-insensitiverats. Brain Res 1981; 225 (2): 297–307

    Article  PubMed  CAS  Google Scholar 

  64. Siegford JM, Ulibarri C. Increase in motoneurons in the spinal nucleus of the bulbocavernosus of prepubertallycastrated male Mongolian gerbils following delayed treatment with testosterone. J Comp Neurol 2004; 473 (4): 485–95

    Article  PubMed  Google Scholar 

  65. Manolides LS, Baloyannis SJ. Influence of hydrocortisone, progesterone and testosterone on dendritic growth in vitro. Acta Otolaryngol 1984; 97 (5-6): 509–22

    Article  PubMed  CAS  Google Scholar 

  66. Sapolsky RM, Uno H, Rebert CS, et al. Hippocampal damage associated with prolonged glucocorticoid exposure inprimates. J Neurosci 1990; 10 (9): 2897–902

    PubMed  CAS  Google Scholar 

  67. Askanas V, McFerrin J, Park-Matsumoto YC, et al. Glucocorticoid increases acetylcholinesterase and organization of the postsynaptic membrane in innervated cultured human muscle. Exp Neurol 1992; 115 (3): 368–75

    Article  PubMed  CAS  Google Scholar 

  68. Heinlein CA, Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic and rogenactions. Mol Endocrinol 2002; 16 (10): 2181–7

    Article  PubMed  CAS  Google Scholar 

  69. Han JZ, Lin W, Lou SJ, et al. A rapid, nongenomic action of glucocorticoids in rat B103 neuroblastoma cells. Biochim Biophys Acta 2002; 1591 (1-3): 21–7

    Article  PubMed  CAS  Google Scholar 

  70. Han JZ, Lin W, Chen YZ. Inhibition of ATP-induced calcium influx in HT4 cells by glucocorticoids: involvementof protein kinase A. Acta Pharm Sinic 2005; 26 (2): 199–204

    Article  Google Scholar 

  71. Passaquin AC, Lhote P, Rüegg UT. Calcium influx inhibition by steroids and analogs in C2C12 skeletal musclecells. Brit J Pharmacol 1998; 124 (8): 1751–9

    Article  CAS  Google Scholar 

  72. Jaimovich E, Espinosa A. Possible link of different slow calcium signals generated by membrane potential andhormones to differential gene expression in culturedmuscle cells. Biol Res 2004; 37 (4): 625–33

    Article  PubMed  Google Scholar 

  73. Estrada M, Liberona JL, Miranda M, et al. Aldosteroneand testosterone-mediated intracellular calcium responsein skeletal muscle cell cultures. Am J Physiol Endocrinol Metab 2000; 279 (1): E132–9

    PubMed  CAS  Google Scholar 

  74. Estrada M, Espinosa A, Müller M, et al. Testosterone stimulates intracellular calcium release and mitogenactivatedprotein kinases via a Gprotein-coupled receptorin skeletal muscle cells. Endocrinology 2003; 144 (8): 3586–97

    Article  PubMed  CAS  Google Scholar 

  75. Sunny F, Oommen OV. Rapid action of glucocorticoids on branchial ATPase activity in Oreochromis mossambicus: an in vivo and in vitro study. Comp Biochem Physiol BBiochem Mol Biol 2001; 130 (3): 323–30

    Article  CAS  Google Scholar 

  76. Ding AQ, Stallone JN. Testosterone-induced relaxation of rat aorta is androgen structure specific and involves K+channel activation. J Appl Physiol 2001; 91 (6): 2742–50

    PubMed  CAS  Google Scholar 

  77. Bai CX, Kurokawa J, Tamagawa M, et al. Nontranscriptional regulation of cardiac repolarization currents bytestosterone. Circulation 2005; 112 (12): 1701–10

    Article  PubMed  CAS  Google Scholar 

  78. Nguyen TV, Yao M, Pike CJ. Androgens activate mitogenactivated protein kinase signalling: role in neuroprotection. J Neurochem 2005; 94 (6): 1639–51

    Article  PubMed  CAS  Google Scholar 

  79. Hatanaka Y, Mukai H, Mitsuhashi K, et al. Androgen rapidly increases dendritic thorns of CA3 neurons in malerat hippocampus. Biochem Biophys Res Commun 2009; 381 (4): 728–32

    Article  PubMed  CAS  Google Scholar 

  80. Jansen HT, Popiela CL, Jackson GL, et al. A re-evaluation of the effects of gonadal steroids on neuronal activity inthe male rat. Brain Res Bull 1993; 31 (1-2): 217–23

    Article  PubMed  CAS  Google Scholar 

  81. Smith MD, Jones LS, Wilson MA. Sex differences in hippocampal slice excitability: role of testosterone. Neuroscience 2002; 109 (3): 517–30

    Article  PubMed  CAS  Google Scholar 

  82. Chen YZ, Hua SY, Wang CA, et al. An electrophysiological study on the membrane receptor-mediatedaction of glucocorticoids in mammalian neurons. Neuroendocrinol 1991; 53 (1 Suppl.): 25S–30S

    Article  Google Scholar 

  83. Kasai M, Yamashita H. Inhibition by cortisol of neurons in the paraventricular nucleus of the hypothalamus in adrenalectomizedrats: an in vitro study. Neurosci Lett 1988; 91 (1): 59–64

    Article  PubMed  CAS  Google Scholar 

  84. Zaki A, Barrett-Jolley R. Rapid neuromodulation by cortisol in the rat paraventricular nucleus: an in vitro study. Brit J Pharmacol 2002; 137 (1): 87–97

    Article  CAS  Google Scholar 

  85. James PJ, Nyby JG. Testosterone rapidly affects the expression of copulatory behavior in house mice (Musmusculus). Physiol Behav 2002; 75 (3): 287–94

    Article  PubMed  CAS  Google Scholar 

  86. Aikey JL, Nyby JG, Anmuth DM, et al. Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm Behav 2002; 42 (4): 448–60

    Article  PubMed  CAS  Google Scholar 

  87. Schiml PA, Rissman EF. Cortisol facilitates induction of sexual behavior in the female musk shrew (Suncusmurinus). Behav Neurosci 1999; 113 (1): 166–75

    Article  PubMed  CAS  Google Scholar 

  88. Remage-Healey L, Bass AH. From social behavior to neural circuitry: steroid hormones rapidly modulate advertisementcalling via a vocal pattern generator. Horm Behav 2006; 50 (3): 432–41

    Article  PubMed  CAS  Google Scholar 

  89. Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med 2004; 34 (8): 513–54

    Article  PubMed  Google Scholar 

  90. O’Connor DB, Archer J, Hair WM, et al. Activational effects of testosterone on cognitive function in men. Neuropsychobiologia 2001; 39 (13): 1385–94

    Article  Google Scholar 

  91. Aleman A, Bronk E, Kessels RPC, et al. A single administration of testosterone improves visuospatial ability inyoung women. Psychoneuroendocrino 2004; 29 (5): 612–7

    Article  CAS  Google Scholar 

  92. Hsu FC, Garside MJ, Massey AE, et al. Effects of a single dose of cortisol on the neural correlates of episodicmemory and error processing in healthy volunteers. Psychopharmacology 2003; 167 (4): 431–42

    PubMed  CAS  Google Scholar 

  93. Buss C, Wolf OT, Witt J, et al. Autobiographic memory impairment following acute cortisol administration. Psychoneuroendocrino 2004; 29 (8): 1093–6

    Article  CAS  Google Scholar 

  94. Hermans EJ, Putman P, Baas JM, et al. A single administration of testosterone reduces fear-potentiated startle inhumans. Biol Psychiat 2006; 59 (9): 872–4

    Article  PubMed  CAS  Google Scholar 

  95. Putman P, Antypa N, Crysovergi P, et al. Exogenous cortisol acutely influences motivated decision making inhealthy young men. Psychopharmacology 2010; 208 (2): 257–63

    Article  PubMed  CAS  Google Scholar 

  96. van Honk J, Peper JS, Schutter DJ. Testosterone reduces unconscious fear but not consciously experienced anxiety: implications for the disorders of fear and anxiety. Biol Psychiat 2005; 58 (3): 218–25

    Article  PubMed  CAS  Google Scholar 

  97. Lacreuse A, Chiavetta MR, Shirai AC, et al. Effects of testosterone on cognition in young adult male rhesusmonkeys. Physiol Behav 2009; 98 (5): 524–31

    Article  PubMed  CAS  Google Scholar 

  98. Lyons DM, Lopez JM, Yang C, et al. Stress-level cortisol treatment impairs inhibitory control of behavior in monkeys. J Neurosci 2000; 20 (20): 7816–21

    PubMed  CAS  Google Scholar 

  99. Sale MV, Ridding MC, Nordstorm MA. Cortisol inhibits neuroplasticity induction in humanmotor cortex. JNeurosci 2008; 28 (33): 8285–93

    Article  CAS  Google Scholar 

  100. Bonifazi M, Ginanneschi F, della Volpe R, et al. Effects of gonadal steroids on the input-output relationship of the corticospinal pathway in humans. Brain Res 2004; 1011 (2): 187–94

    Article  PubMed  CAS  Google Scholar 

  101. Banks WA, Morley JE, Niehoff ML, et al. Delivery of testosterone to the brain by intranasal administration: comparison to intravenous testosterone. J Drug Target 2009; 17 (2): 91–7

    Article  PubMed  CAS  Google Scholar 

  102. James P, Rivier C, Lee S. Presence of corticotrophinreleasing factor and/or tyrosine hydroxylase in cells of aneural brain-testicular pathway that are labelled by atransganglionic tracer. J Neuroendocrinol 2008; 20 (2): 173–81

    Article  PubMed  CAS  Google Scholar 

  103. Selvage DJ, Rivier C. Importance of the paraventricular nucleus of the hypothalamus as a component of a neuralpathway between the brain and the testes that modulatestestosterone secretion independently of the pituitary. Endocrinology 2003; 144 (2): 594–8

    Article  PubMed  CAS  Google Scholar 

  104. Selvage DJ, Lee SY, Parsons LH, et al. A hypothalamictesticular neural pathway is influenced by brain catecholamines,but not testicular blood flow. Endocrinology 2004; 145 (4): 1750–9

    Article  PubMed  CAS  Google Scholar 

  105. Stromberg J, Backstrom T, Lundgren P. Rapid nongenomic effect of glucocorticoid metabolites and neurosteroidson the gamma-aminobutyric acid-A receptor. EurJ Neurosci 2005; 21 (8): 2083–8

    Article  CAS  Google Scholar 

  106. Weill-Engerer S, David JP, Sazdovitch V, et al. Neurosteroid quantification in human brain regions: comparisonbetween Alzheimer’s and nondemented patients. J Clin Endocrinol Metab 2002; 87 (11): 5138–43

    Article  PubMed  CAS  Google Scholar 

  107. Ebner MJ, Corol DI, Havlíková H, et al. Identification of neuroactive steroids and their precursors and metabolitesin adult male rat brain. Endocrinology 2006; 147 (1): 179–90

    Article  PubMed  CAS  Google Scholar 

  108. Ishii H, Tsurugizawa T, Ogiue-Ikeda M, et al. Local production of sex hormones and their modulation of hippocampalsynaptic plasticity. Neuroscientist 2007; 13 (4): 323–34

    Article  PubMed  CAS  Google Scholar 

  109. Summers CH, Larson ET, Ronan PJ, et al. Serotonergic responses to corticosterone and testosterone in the limbicsystem. Gen Comp Endocrinol 2000; 117 (1): 151–9

    Article  PubMed  CAS  Google Scholar 

  110. Berchtold MW, Brinkmeier H, Muntener M. Calcium ion in skeletal muscle: its crucial role for muscle function,plasticity, and disease. Physiol Rev 2000; 80 (3): 1215–65

    PubMed  CAS  Google Scholar 

  111. Anttila K, Mänttä ri, Järvilehto M. Testosterone and Ca2+ regulation in skeletal muscle. Int J Sports Med 2008; 29 (10): 795–802

    Article  PubMed  CAS  Google Scholar 

  112. Braun S, Sarkozi E, McFerrin J, et al. Hydrocortisone influences voltage-dependent L-type calcium channelsin cultured human skeletal muscle. J Neurosci Res 1995; 41 (6): 727–33

    Article  PubMed  CAS  Google Scholar 

  113. Clausen T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 2003; 83 (4): 1269–323

    PubMed  CAS  Google Scholar 

  114. Dlouhá H, Vyskoçil F. The effect of cortisol on the excitability of the rat muscle fibre membrane and neuromusculartransmission. Physiol Bohemoslov 1979; 28 (6): 485–94

    PubMed  Google Scholar 

  115. Sachs BD, Leipheimer RE. Rapid effect of testosterone on striated muscle activity in rats. Neuroendocrinol 1988; 48 (5): 453–8

    Article  CAS  Google Scholar 

  116. Blanco CE, Zhan W, Fang Y, et al. Exogenous testosterone treatment decreases diaphragm neuromuscular transmissionfailure in male rats. J Appl Physiol 2001; 90 (3): 850–6

    PubMed  CAS  Google Scholar 

  117. Stewart PM. The adrenal cortex. In: Larsen RP, Kronoberg HM, Melmed S, et al., editors. Williams textbook of endocrinology. 10th ed. Philadelphia (PA): W.B. Saunders, 2002: 491–551

    Google Scholar 

  118. Gorostiaga EM, Czerwinski SM, Hickson RC. Acute glucocorticoid effects on glycogen utilization, O2 uptake, andendurance. J Appl Physiol 1988; 64 (3): 1098–106

    PubMed  CAS  Google Scholar 

  119. Dodt C, Keyser B, Molle M, et al. Acute suppression of muscle sympathetic nerve activity by hydrocortisone inhumans. Hypertension 2000; 35 (3): 758–63

    Article  PubMed  CAS  Google Scholar 

  120. Vozarova B, Weyer C, Snitker S, et al. Effect of cortisol on muscle sympathetic nerve activity in Pima Indiansand Caucasians. J Clin Endocrinol Metab 2003; 88 (7): 3218–26

    Article  PubMed  CAS  Google Scholar 

  121. Tsai LW, Sapolsky RM. Rapid stimulatory effects of testosterone upon myotubule metabolism and sugar transport,as assessed by silicon microphysiometry. Aggressive Behav 1996; 22 (2): 357–64

    Article  CAS  Google Scholar 

  122. Holmang A, Bjorntorp P. The effects of testosterone on insulin sensitivity in male rats. Acta Physiol Scand 1992; 146 (4): 505–10

    Article  PubMed  CAS  Google Scholar 

  123. Holmang A, Larsson BM, Brzezinska Z, et al. Effects of short-term testosterone exposure on insulin sensitivity ofmuscles in female rats. Am J Physiol 1992; 262: E851–5

    Google Scholar 

  124. Braun B, Gerson L, Hagobian T, et al. No effect of shortterm testosterone manipulation on exercise substrate metabolismin men. J Appl Physiol 2005; 99 (5): 1930–7

    Article  PubMed  CAS  Google Scholar 

  125. Ramamani A, Aruldhas MM, Govindarajulu P. Impact of testosterone and oestradiol on region specificity of skeletalmuscle-ATP, creatine phosphokinase and myokinasein male and female Wistar rats. Acta Physiol Scand 1999; 166 (2): 91–7

    Article  PubMed  CAS  Google Scholar 

  126. Ramamani A, Aruldhas MM, Govindarajulu P. Differential response of rat skeletal muscle glycogen metabolismto testosterone and estradiol. Can J Physiol Pharmacol 1999; 77 (4): 300–4

    Article  PubMed  CAS  Google Scholar 

  127. Pastoris O, Dossena M, Fulle D, et al. Action of testosterone on some biochemical parameters related to the energymetabolism of the skeletal muscle. Arch Int Pharmacodyn Ther 1983; 263 (1): 129–38

    PubMed  CAS  Google Scholar 

  128. van Breda E, Keizer HA, Geurten P, et al. Modulation of glycogen metabolism of rat skeletal muscles by endurancetraining and testosterone treatment. Pflügers Arch 1993; 424 (3-4): 294–300

    Article  PubMed  Google Scholar 

  129. Enoka RM. Adaptability of the motor system: acute adjustments: chapter 8. In: Neuromechanics of humanmovement. 3rd ed. Champaign (IL): Human Kinetics, 2002: 363–96

    Google Scholar 

  130. McCaulley GO, McBride JM, Cormie P, et al. Acute hormonal and neuromuscular responses to hypertrophy,strength and power type resistance exercise. Eur J Appl Physiol 2009; 105 (5): 695–704

    Article  PubMed  CAS  Google Scholar 

  131. Crewther B, Cronin J, Keogh J, et al. The salivary testosterone and cortisol response to three loading schemes. J Strength Cond Res 2008; 22 (1): 250–5

    Article  PubMed  Google Scholar 

  132. Smilios I, Pilianidis T, Karamouzis M, et al. Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc 2003; 35 (4): 644–54

    Article  PubMed  CAS  Google Scholar 

  133. Häkkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistance protocols in maleathletes. J Appl Physiol 1993; 74 (2): 882–7

    PubMed  Google Scholar 

  134. Kraemer WJ, Gordon SE, Fleck SJ, et al. Endogenous anabolic hormonal and growth factor responses to heavyresistance exercise in males and females. Int J Sports Med 1991; 12 (2): 228–35

    Article  PubMed  CAS  Google Scholar 

  135. Linnamo V, Pakarinen A, Komi PV, et al. Acute hormonal responses to submaximal and maximal heavy resistanceand explosive exercises in men and women. J Strength Cond Res 2005; 19 (3): 566–71

    PubMed  Google Scholar 

  136. Crewther B, Cronin J, Keogh J. Possible stimuli for strength and power adaptation: acute mechanical responses. Sports Med 2005; 35 (11): 967–89

    Article  PubMed  Google Scholar 

  137. Crewther BT, Cronin J, Keogh JWL. The contribution of Vol., technique, and load to single-repetition andtotal-repetition kinematics and kinetics in response tothree loading schemes. J Strength Cond Res 2008; 22 (6): 1908–15

    Article  PubMed  Google Scholar 

  138. Keogh J, Wilson G, Weatherby R. A cross-sectional comparison of different resistance training techniques in thebench press. J Strength Cond Res 1999; 13 (3): 247–58

    Google Scholar 

  139. Crewther BT, Cook CJ, Lowe TE, et al. The effects of short cycle sprints on power, strength and salivary hormonesin elite rugby players. J Strength Cond Res. Epub 2010 Jan

    Google Scholar 

  140. Obmiński Z, Borkowski L, Ladyga M, et al. Concentrations of cortisol, testosterone and lactate, and poweroutput in repeated, supramaximal exercise in elite fencers. Biol Sport 1998; 15 (1): 19–24

    Google Scholar 

  141. Crewther BT, Lowe T, Weatherby RP, et al. Prior sprint cycling did not enhance training adaptation, but restingsalivary hormones were related to workout power andstrength. Eur J Appl Physiol 2009; 105 (6): 919–27

    Article  PubMed  Google Scholar 

  142. Hansen S, Kvorning T, Kjaer M, et al. The effect of shortterm strength training on human skeletal muscle: the importanceof physiologically elevated hormone levels. Scand J Med Sci Sport 2001; 11 (6): 347–54

    Article  CAS  Google Scholar 

  143. Bosco C, Viru A. Testosterone and cortisol levels in blood of male sprinters, soccer players and cross-country skiers. Biol Sport 1998; 15 (1): 3–8

    Google Scholar 

  144. Cardinale M, Stone MH. Is testosterone influencing explosive performance? J Strength Cond Res 2006; 20 (1): 103–7

    PubMed  Google Scholar 

  145. Bambaeichi E, Rahnama N. Comparison of testosterone, progesterone and oestradiol concentrations between sprint runners, endurance runners and untrained males. J Sports Sci 2005; 23 (2): 187–8

    Google Scholar 

  146. Kraemer WJ, Hatfield DL, Spiering BA, et al. Effects of a multi-nutrient supplement on exercise performance andhormonal responses to resistance exercise. Eur J Appl Physiol 2007; 101 (5): 637–46

    Article  PubMed  CAS  Google Scholar 

  147. Bird SP, Tarpenning KM, Marino FE. Independent and combined effects of liquid carbohydrate/essential aminoacid ingestion on hormonal and muscular adaptationsfollowing resistance training in untrained men. Eur J Appl Physiol 2006; 97 (2): 225–38

    Article  PubMed  CAS  Google Scholar 

  148. Tarpenning KM, Wiswell RA, Hawkins SA, et al. Influence of weight training exercise and modification of hormonalresponse on skeletal muscle growth. J Sci Med Sport 2001; 4 (4): 431–46

    Article  PubMed  CAS  Google Scholar 

  149. Kraemer WJ, Hatfield DL, Volek JS, et al. Effects of amino acids supplement on physiological adaptations to resistancetraining. Med Sci Sports Exerc 2009; 41 (5): 1111–21

    Article  PubMed  CAS  Google Scholar 

  150. Kraemer WJ, Ratamess NA, Volek JS, et al. The effects of amino acid supplementation on hormonal responses toresistance training overreaching. Metabolism 2006; 55 (3): 282–91

    Article  PubMed  CAS  Google Scholar 

  151. Hulmi JJ, Volek JS, Selänne H, et al. Protein ingestion prior to strength exercise affects blood hormones andmetabolism. Med Sci Sports Exerc 2005; 37 (11): 1990–7

    Article  PubMed  Google Scholar 

  152. Kraemer W, Volek J, Bush J, et al. Hormonal responses to consecutive days of heavy-resistance exercise with orwithout nutritional supplementation. J Appl Physiol 1998; 85 (4): 1544–55

    PubMed  CAS  Google Scholar 

  153. Thyfault JP, Carper MJ, Richmond S, et al. Effects of liquid carbohydrate ingestion on markers of anabolismfollowing high-intensity resistance exercise. J Strength Cond Res 2004; 18 (1): 174–9

    PubMed  Google Scholar 

  154. Ratamess NA, Hoffman JR, Ross R, et al. Effects of an amino acid/creatine energy supplement on the acute hormonalresponse to resistance exercise. Int J Sport Nutr Exerc Metab 2007; 17 (6): 608–23

    PubMed  CAS  Google Scholar 

  155. Hoffman JR, Ratamess NA, Ross R, et al. Effect of a preexercise energy supplement on the acute hormonal responseto resistance exercise. J Strength Cond Res 2008; 22 (3): 874–82

    Article  PubMed  Google Scholar 

  156. Williams AG, Ismail AN, Sharma A, et al. Effects of resistance exercise Vol. and nutritional supplementationon anabolic and catabolic hormones. Eur J Appl Physiol 2002; 86 (4): 315–21

    Article  PubMed  CAS  Google Scholar 

  157. Baty JJ, Hwang H, Ding Z, et al. The effect of a carbohydrate and protein supplement on resistance exerciseperformance, hormonal response, and muscle damage. JStrength Cond Res 2007; 21 (2): 321–9

    Google Scholar 

  158. Fry AC, Kraemer WJ, Stone MH, et al. Endocrine and performance responses to high Vol. training and aminoacid supplementation in elite junior weightlifters. Int J Sport Nutr 1993; 3 (3): 306–22

    PubMed  CAS  Google Scholar 

  159. Kraemer WJ, Häkkinen K, Newton RU, et al. Effects of heavy-resistance training on hormonal responsepatterns in younger vs. older men. J Appl Physiol 1999; 87 (3): 982–92

    PubMed  CAS  Google Scholar 

  160. Kraemer WJ, Staron R, Hagerman F, et al. The effects of short-term resistance training on endocrine function in men and women. Eur J Appl Physiol Occup Physiol 1998; 78 (1): 69–76

    Article  PubMed  CAS  Google Scholar 

  161. Izquierdo M, Ibanez J, Calbert JA, et al. Cytokine and hormone responses to resistance training. Eur J Appl Physiol 2009; 107 (4): 397–409

    Article  PubMed  CAS  Google Scholar 

  162. Kraemer WJ, Fry AC, Warren BJ, et al. Acute hormonal responses in elite junior weightlifters. Int J Sports Med 1992; 13 (2): 103–9

    Article  PubMed  CAS  Google Scholar 

  163. Bosco C, Colli R, Bonomi R, et al. Monitoring strength training: neuromuscular and hormonal profile. Med Sci Sports Exerc 2000; 32 (1): 202–8

    PubMed  CAS  Google Scholar 

  164. Słowińska-Lisowska M, Witkowski K. The influence of exercise on the functioning of the pituitary-gonadal axis inphysically active older and younger men. Aging Male 2001 14 (3): 145–50

    Google Scholar 

  165. Bosco C, Tihanyi J, Rivalta L, et al. Hormonal responses in strenuous jumping effort. Jap J Physiol 1996; 46 (1): 93–8

    Article  CAS  Google Scholar 

  166. Jürimäe J, Jürimä e. Responses of blood hormones to the maximal rowing ergometer test in college rowers. J Sports Med Phys Fit 2001; 41 (1): 73–7

    Google Scholar 

  167. Słowińska-Lisowska M, Majda J. Hormone plasma levels from pituitary-gonadal axis in performance athletes afterthe 400 m run. J Sports Med Phys Fit 2002; 42 (2): 243–9

    Google Scholar 

  168. Boone JB, Lambert CP, Flynn MG, et al. Resistance exercise effects on plasma cortisol, testosterone and creatinekinase activity in anabolic-androgenic steroid users. Int J Sports Med 1990; 11 (4): 293–7

    Article  PubMed  Google Scholar 

  169. Tsopanakis A, Stalikas A, Sgouraki E, et al. Stress adaptation in athletes: relation of lipoprotein levels to hormonalresponse. Pharmacol Biochem Behav 1994; 48 (2): 377–82

    Article  PubMed  CAS  Google Scholar 

  170. Tesch P, Karlsson J. Muscle fiber types and size in trained and untrained muscles of elite athletes. J Appl Physiol 1985: 59 (6): 1716–20

    PubMed  CAS  Google Scholar 

  171. Tesch P, Thorsson A, Essen-Gustavsson B. Enzyme activities of FT and ST muscle fibres in heavy-resistancetrained athletes. J Appl Physiol 1989; 67 (1): 83–7

    PubMed  CAS  Google Scholar 

  172. Smith DJ. A framework for understanding the training process leading to elite performance. Sports Med 2003; 33 (15): 1103–26

    Article  PubMed  Google Scholar 

  173. Beaven MC, Gill ND, Cook CJ. Salivary testosterone and cortisol responses in professional rugby players after fourresistance exercise protocols. J Strength Cond Res 2008; 22 (2): 426–32

    Article  PubMed  Google Scholar 

  174. Jensen J, Oftebro H, Breigan B, et al. Comparison of changes in testosterone concentrations after strengthand endurance exercise in well trained men. Eur J Appl Physiol Occup Physiol 1991; 63 (6): 467–71

    Article  PubMed  CAS  Google Scholar 

  175. Viru A, Karelson K, Smirnova T. Stability and variability in hormonal responses to prolonged exercise. Int J Sports Med 1992; 13 (3): 230–5

    Article  PubMed  CAS  Google Scholar 

  176. Di Luigi L, Guidetti L, Baldari C, et al. Heredity and pituitary response to exercise-related stress in trained men. Int J Sports Med 2003; 24 (8): 551–8

    Article  PubMed  Google Scholar 

  177. Beaven MC, Cook CJ, Gill ND. Significant strength gains observed in rugby players after specific resistance exerciseprotocols based on individual salivary testosterone responses. J Strength Cond Res 2008; 22 (2): 419–25

    Article  PubMed  Google Scholar 

  178. Craig BW, Brown R, Everhart J. Effects of progressive resistance training on growth hormone and testosterone levels in young and elderly subjects. Mech Ageing Dev 1989; 49 (2): 159–69

    Article  PubMed  CAS  Google Scholar 

  179. Bell G, Syrotuik D, Martin TP, et al. Effect of concurrent strength and endurance training on skeletal muscle propertiesand hormone concentrations in humans. Eur J Appl Physiol 2000; 81 (5): 418–27

    Article  PubMed  CAS  Google Scholar 

  180. Kvorning T, Bagger M, Caserotti P, et al. Effects of vibration and resistance training on neuromuscularand hormonal measures. Eur J Appl Physiol 2006; 96 (5): 615–25

    Article  PubMed  CAS  Google Scholar 

  181. Sedliak M, Finni T, Cheng S, et al. Effect of time-of-dayspecific strength training on serum hormone concentrationsand isometric strength in men. Chronobiol Int 2007; 24 (6): 1159–77

    Article  PubMed  CAS  Google Scholar 

  182. Häkkinen K, Pakarinen A, Alén M, et al. Neuromuscular and hormonal adaptations in athletes to strength trainingin two years. J Appl Physiol 1988; 65 (6): 2406–12

    PubMed  Google Scholar 

  183. Fry AC, Kraemer WJ, Stone MH, et al. Relationships between serum testosterone, cortisol, and weightlifting performance. J Strength Cond Res 2000; 14 (3): 338–43

    Article  Google Scholar 

  184. Fry AC, Kraemer WJ, Ramsey LT. Pituitary-adrenalgonadal responses to high-intensity resistance exerciseovertraining. J Appl Physiol 1998; 85 (6): 2352–9

    PubMed  CAS  Google Scholar 

  185. Häkkinen K, Pakarinen A. Serum hormones in male strength athletes during intensive short term strengthtraining. Eur J Appl Physiol Occ Physiol 1991; 63 (3-4): 194–9

    Article  Google Scholar 

  186. Alén M, Pakarinen A, Häkkinen K, et al. Responses of serum androgenic-anabolic and catabolic hormones toprolonged strength training. Int J Sports Med 1988; 9 (3): 229–33

    Article  PubMed  Google Scholar 

  187. Raastad T, Glomsheller T, Bøjro T, et al. Changes in human skeletal muscle contractility and hormone statusduring 2 weeks of heavy strength training. Eur J Appl Physiol 2001; 84 (1-2): 54–63

    Article  PubMed  CAS  Google Scholar 

  188. Potteiger JA, Judge LW, Cerny JA, et al. Effects of altering training Vol. and intensity on body mass, performance,and hormonal concentrations in weight-eventathletes. J Strength Cond Res 1995; 9 (1): 55–8

    Google Scholar 

  189. Bell G, Syrotuik D, Socha T, et al. Effect of strength training and concurrent strength and endurance trainingon strength, testosterone, and cortisol. J Strength Cond Res 1997; 11 (1): 57–64

    Google Scholar 

  190. Moore CA, Fry AC. Nonfunctional overreaching during off-season training for skill position players in collegiateAmerican football. J Strength Cond Res 2007; 21 (3): 793–800

    PubMed  Google Scholar 

  191. Izquierdo M, Ibañez J, Gonzalez-Badillo J, et al. Differential effects of strength training leading to failure versusnot to failure on hormonal responses, strength, andmuscle power gains. J Appl Physiol 2006; 100 (5): 1647–56

    Article  PubMed  CAS  Google Scholar 

  192. Häkkinen K, Pakarinen A, Pakarinen A, et al. Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol Occup Physiol 1985; 53 (4): 287–93

    Article  PubMed  Google Scholar 

  193. McCall GE, Byrnes WC, Fleck SJ, et al. Acute and chronic hormonal responses to resistance training designed topromote muscle hypertrophy. Can J Appl Physiol 1999; 24 (1): 96–107

    Article  PubMed  CAS  Google Scholar 

  194. Hartman MJ, Clark B, Bembens DA, et al. Comparisons between twice-daily and once-daily training sessionsin male weight lifters. Int J Sports Physiol Perform 2007; 2 (2): 159–69

    PubMed  Google Scholar 

  195. Ostrowski JK, Wilson J, Weatherby R, et al. The effect of weight training Vol. on hormonal output andmuscular size and function. J Strength Cond Res 1997; 11 (1): 148–54

    Google Scholar 

  196. Izquierdo M, Ibañez J, Gonzalez-Badillo JJ, et al. Detraining and tapering effects on hormonal responses andstrength performance. J Strength Cond Res 2007; 21 (3): 768–75

    PubMed  Google Scholar 

  197. Ahtiainen JP, Pakarinen A, Alén M, et al. Short vs. long rest period between the sets in hypertrophic resistancetraining: influence on muscle strength, size, and hormonaladaptations in trained men. J Strength Cond Res 2005; 19 (3): 572–82

    PubMed  Google Scholar 

  198. Fry AC, Kraemer WJ, Stone MH, et al. Endocrine responses to overreaching before and after 1 year ofweightlifting. Can J Appl Physiol 1994; 19 (4): 400–10

    Article  PubMed  CAS  Google Scholar 

  199. Häkkinen K. Neuromuscular and hormonal adaptations during strength and power training. J Sports Med Phys Fit 1989; 29 (1): 9–26

    Google Scholar 

  200. Häkkinen K, Pakarinen A, Alén M, et al. Daily hormonal and neuromuscular responses to intensive strength trainingin 1 week. Int J Sports Med 1988; 9 (6): 422–8

    Article  PubMed  Google Scholar 

  201. Häkkinen K, Pakarinen A, Alén M, et al. Relationships between training Vol., physical performance capacity,and serum hormone concentrations during prolongedtraining in elite weight lifters. Int J Sports Med 1987; 8 (1Suppl.): 61S–5S

    Article  Google Scholar 

  202. Crewther BT, Cook C. Relationships between salivary testosterone and cortisol concentrations and trainingperformance in Olympic weightlifters. J Sports Med Phys Fitness 2010; 50 (3): 166–73

    Google Scholar 

  203. Hortobágyi T, Houmard JA, Stevenson JR, et al. The effects of detraining on power athletes. Med Sci Sports Exerc 1993; 25 (8): 929–35

    PubMed  Google Scholar 

  204. Arce JC, De Souza MJ, Pescatello LS, et al. Subclinical alterations in hormone and semen profiles in athletes. Fertil Steril 1993; 59 (2): 398–404

    PubMed  CAS  Google Scholar 

  205. De Souza MJ, Arce JC, Pescatello LS, et al. Gonadal hormones and semen quality in male runners. Int J Sports Med 1994; 15 (7): 383–91

    Article  PubMed  Google Scholar 

  206. Wittert GA, Livesey JH, Espiner EA, et al. Adaptation of the hypothalamopituitary adrenal axis to chronic exercise stress in humans. Med Sci Sports Exerc 1996; 28 (8): 1015–9

    Article  PubMed  CAS  Google Scholar 

  207. Grasso G, Lodi L, Lupo C, et al. Glucocorticoid receptors in human peripheral blood mononuclear cells in relationto age and to sport activity. Life Sci 1997; 61 (3): 301–8

    Article  PubMed  CAS  Google Scholar 

  208. Hackney AC, Fahrner CL, Gulledge TP. Basal reproductive hormonal profiles are altered in endurancetrained men. J Sports Med Phys Fit 1998; 38 (2): 138–41

    CAS  Google Scholar 

  209. Maïmoun L, Lumbroso S, Manetta J, et al. Testosterone is significantly reduced in endurance athletes withoutimpact on bone mineral density. Horm Res 2003; 59 (6): 285–92

    Article  PubMed  CAS  Google Scholar 

  210. Izquierdo M, Ibañez J, Häkkinen K, et al. Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists. J Sports Sci 2004; 22 (5): 465–78

    Article  PubMed  Google Scholar 

  211. Timon R, Olcina G, Maynar M, et al. Evaluation of urinary steroid profile in highly trained cyclists. J Sports Med Phys Fit 2008; 48 (8): 530–4

    CAS  Google Scholar 

  212. Bonifazi M, Mencarelli M, Fedele V, et al. Glucocorticoid receptor mRNA expression in peripheral blood mononuclearcells in high trained compared to low trained athletesand untrained subjects. J Endocrinol Invest 2009; 32 (10): 816–20

    PubMed  CAS  Google Scholar 

  213. Duclos M, Corcuff JB, Rashedi M, et al. Trained versus untrained men: different immediate post-exercise responsesof pituitary adrenal axis. A preliminary study. Eur J Appl Physiol Occup Physiol 1997; 75 (4): 343–50

    Article  PubMed  CAS  Google Scholar 

  214. Kadi F, Bonnerud P, Eriksson A, et al. The expression of androgen receptors in human neck and limb muscles: effectsof training and self-administration of androgenicanabolicsteroids. Histochem Cell Biol 2000; 113 (1): 25–9

    Article  PubMed  CAS  Google Scholar 

  215. Willoughby DS, Taylor L. Effects of sequential bouts of resistance exercise on androgen receptor expression. Med Sci Sports Exerc 2004; 36 (9): 1499–506

    Article  PubMed  CAS  Google Scholar 

  216. Spiering BA, Kraemer WJ, Vingren JL, et al. Elevated endogenous testosterone concentrations potentiate muscleandrogen receptor responses to resistance exercise. J Steroid Biochem 2009; 114 (3-5): 195–9

    Article  CAS  Google Scholar 

  217. Hulmi JJ, Ahtiainen JP, Selänne H, et al. Androgen receptors and testosterone in men: effects of protein ingestion,resistance exercise and fiber type. J Steroid Biochem 2008; 110 (1-2): 130–7

    Article  CAS  Google Scholar 

  218. Bamman MM, Shipp JR, Jiang J, et al. Mechanical load increases muscle IGF-1 and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab 2001; 280 (3): E383–90

    Google Scholar 

  219. Kraemer WJ, Spiering BA, Volek JS, et al. Androgenic responses to resistance exercise: effects of feeding andL-carnitine. Med Sci Sports Exerc 2006; 38 (7): 1288–96

    Article  PubMed  CAS  Google Scholar 

  220. Ratamess NA, Kraemer WJ, Volek JS, et al. Androgen receptor content following heavy resistance exercise inmen. J Steroid Biochem 2005; 93 (1): 35–42

    Article  CAS  Google Scholar 

  221. Vingren JL, Kraemer WJ, Hatfield DL, et al. Effect of resistance exercise on muscle steroid receptor protein contentin strength-trained men and women. Steroids 2009; 74 (13-14): 1033–9

    Article  PubMed  CAS  Google Scholar 

  222. Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, et al. Androgen receptor in human skeletal muscle and culturedmuscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab 2004; 89 (10): 5245–55

    Article  PubMed  CAS  Google Scholar 

  223. Johansen JA, Breedlove SM, Jordan CL. Androgen receptor expression in the levator ani muscle of male mice. J Neuroendocrinol 2007; 19 (10): 823–6

    Article  PubMed  CAS  Google Scholar 

  224. Bricout VA, Serrurier BD, Bigard AX, et al. Effects of hindlimb suspension and androgen treatment on testosteronereceptors in rat skeletal muscle. Eur J Appl Physiol Occup Physiol 1999; 79 (5): 443–8

    Article  PubMed  CAS  Google Scholar 

  225. Deschenes MR, Maresh CM, Armstrong LE, et al. Endurance and resistance exercise induce muscle fibre typespecific responses in androgen binding capacity. J Steroid Biochem 1994; 50 (3-4): 175–9

    Article  CAS  Google Scholar 

  226. Matsakas A, Nikolaidis MG, Kokalas N, et al. Effect of voluntary exercise on the expression of IGF-1 and androgen receptor in three rat skeletal muscles and onserum IGF-1 and testosterone levels. Int J Sports Med 2004; 25 (7): 502–8

    Article  PubMed  CAS  Google Scholar 

  227. Vingren JL, Koziris LP, Gordon SE, et al. Chronic alcohol intake, resistance training, and muscle androgen receptorcontent. Med Sci Sports Exerc 2005; 37 (11): 1842–8

    Article  PubMed  CAS  Google Scholar 

  228. Willoughby DS, Taylor M, Taylor L. Glucocorticoid receptor and ubiquitin expression after repeated eccentricexercise. Med Sci Sports Exerc 2003; 35 (12): 2023–31

    Article  PubMed  CAS  Google Scholar 

  229. Willoughby DS. Effects of heavy resistance training on myostatin mRNA and protein expression. Med Sci Sports Exerc 2004; 36 (4): 574–82

    Article  PubMed  Google Scholar 

  230. Bonifazi M, Bosco C, Colli R, et al. Glucocorticoid receptors in human peripheral blood mononuclear cells in relationto explosive performance in elite handball players. Life Sci 2001; 69 (8): 961–8

    Article  PubMed  CAS  Google Scholar 

  231. Peijie C, Zicai D, Haowen X, et al. Effects of chronic and acute training on glucocorticoid receptors concentrationsin rats. Life Sci 2004; 75 (11): 1303–11

    Article  PubMed  CAS  Google Scholar 

  232. Peijie B, Zicai D, Tian W. Changes in cytosol glucocorticoid receptor and renal Na(+)-K(+)-ATPase activity after swimming training in rat. J Sports Med Phys Fit 2007; 47 (2): 246–9

    CAS  Google Scholar 

  233. Peijie C, Renbao X, Xinming T. Long-termendurance training induced changes in glucocorticoid receptors concentrations inrat and man. J Sports Med Phys Fit 2004; 44 (3): 322–7

    CAS  Google Scholar 

  234. Coutinho AE, Campbell JE, Fediuc S, et al. Effect of voluntary exercise on peripheral tissue glucocorticoid receptorcontent and the expression and activity of 11b-HSD1 in theSyrian hamster. J Appl Physiol 2006; 100 (5): 1483–8

    Article  PubMed  CAS  Google Scholar 

  235. Kraemer WJ. Endocrine responses to resistance exercise. In: Baechle TR, Earle RW, editors. Essentials of strengthtraining and conditioning. 2nd ed. Champaign (IL): Human Kinetics, 2000: 91–114

    Google Scholar 

  236. Hackney AC, Viru A. Research methodology: endocrinologic measurements in exercise science and sportsmedicine. J Athl Train 2008; 43 (6): 631–9

    Article  PubMed  Google Scholar 

  237. Tremblay MS, Chu SY. Hormonal responses to execise: methodological considerations. In: Warren MP, Constantini NW, editors. Sports endocrinology. Totowa(NJ): Humana Press, Inc., 2000: 1–30

    Chapter  Google Scholar 

  238. Kargotich S, Goodman C, Keast D, et al. Influence of exercise- induced plasma Vol. changes on the interpretationof biochemical data following high-intensity exercise. Clin J Sports Med 1997; 7 (3): 185–91

    Article  CAS  Google Scholar 

  239. Kraemer RR, Kilgore JL, Kraemer GR, et al. Growth hormone, IGF-1, and testosterone responses to resistiveexercise. Med Sci Sports Exerc 1992; 24 (12): 1346–52

    PubMed  CAS  Google Scholar 

  240. Gupta SK, Lindemulder EA, Sathyan G. Modeling of circadian testosterone in healthy men and hypogonadal men. J Clin Pharmacol 2000; 40 (7): 731–8

    Article  PubMed  CAS  Google Scholar 

  241. Thuma JR, Gilders RM, Verdun M, et al. Circadian rhythm of cortisol confounds cortisol responses to exercise: implications for future research. J Appl Physiol 1995; 78 (5): 1657–64

    PubMed  CAS  Google Scholar 

  242. Van Cauter E, Leproult R, Kupfer DJ. Effects of gender and age on the levels and circadian rhythmicity of plasmacortisol. J Clin Endocrinol Metab 1996; 81 (7): 2468–73

    Article  PubMed  Google Scholar 

  243. Bird SP, Tarpenning KM. Influence of circadian time structure on acute hormonal responses to a single bout ofheavy-resistance exercise in weight-trained men. Chronobiol Int 2004; 21 (1): 131–46

    Article  PubMed  CAS  Google Scholar 

  244. Deschenes MR, Kraemer WJ, Bush JA, et al. Biorhythmic influences on functional capacity of human muscle andphysiological responses. Med Sci Sports Exerc 1998; 30 (9): 1399–407

    PubMed  CAS  Google Scholar 

  245. Kanaley JA, Weltman JY, Pieper KS, et al. Cortisol and growth hormone responses to exercise at different times ofday. J Clin Endocrinol Metab 2001; 86 (6): 2881–9

    Article  PubMed  CAS  Google Scholar 

  246. Bishop D. An applied research model for the sport sciences. Sports Med 2008; 38 (3): 253–63

    Article  PubMed  Google Scholar 

  247. Kraemer WJ, Fleck SJ, Evans WJ. Strength and power training: physiological mechanisms of adaptation. Exerc Sport Sci Rev 1996; 24: 363–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review was written as part of the PhD thesis for Southern Cross University by the first author. Support for the preparation of this manuscript was provided by The New Zealand Institute for Plant & Food Research Limited, UK Sport and the Engineering and Physical Sciences Research Council of the UK. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blair T. Crewther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crewther, B.T., Cook, C., Cardinale, M. et al. Two Emerging Concepts for Elite Athletes. Sports Med 41, 103–123 (2011). https://doi.org/10.2165/11539170-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11539170-000000000-00000

Keywords

Navigation