Skip to main content
Log in

Effect of Memantine on Resting State Default Mode Network Activity in Alzheimer’s Disease

  • Original Research Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Background

Memantine is an approved symptomatic treatment for moderate to severe Alzheimer’s disease that reduces the excitotoxic effects of hyperactive glutamatergic transmission. However, the exact mechanism of the effect of memantine in Alzheimer’s disease patients is poorly understood. Importantly, the default mode network (DMN), which plays a key role in attention, is hypoactive in Alzheimer’s disease and is under glutamatergic control.

Objective

To assess the effect of memantine on the activity of the DMN in moderate to severe Alzheimer’s disease.

Methods

Functional magnetic resonance imaging (MRI) data from 15 patients with moderate to severe Alzheimer’s disease, seven treated with memantine (mean±SD age 77±8 years, mean±SD Mini-Mental State Examination [MMSE] score 16±5) and eight with placebo (mean±SD age 76±6 years, mean±SD MMSE score 13±1), were acquired at baseline (T0) and after 6 months of treatment (T6). Resting state components were extracted after spatial normalization in individual patients with independent component analysis. The consistency of the components was assessed using ICASSO and the DMN was recognized through spatial correlation with a pre-defined template. Voxel-based statistical analyses were performed to study the change in DMN activity from T0 to T6 in the two groups.

Results

At T0, the two groups showed similar DMN activity except in the precuneus and cuneus, where the patients who started treatment with memantine had slightly greater activity (p <0.05 corrected for familywise error [FWE]). The prospective comparison between T0 and T6 in the treated patients showed increased DMN activation mapping in the precuneus (p <0.05, FWE corrected), while the prospective comparison in the untreated patients did not show significant changes. The treatment×time interaction term was significant at p <0.05, FWE corrected.

Conclusions

The results suggest a positive effect of memantine treatment in patients with moderate to severe Alzheimer’s disease, resulting in an increased resting DMN activity in the precuneus region over 6 months. Future studies confirming the present findings are required to further demonstrate the beneficial effects of memantine on the DMN in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Areosa SA, Sherriff F. Memantine for dementia. Cochrane Database Syst Rev 2005; (3): CD003154

    Google Scholar 

  2. Lopez OL, Becker JT, Wahed AS, et al. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J Neurol Neurosurg Psychiatry 2009; 80(6): 600–7

    Article  PubMed  CAS  Google Scholar 

  3. Peskind ER, Potkin SG, Pomara N, et al. Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry 2006; 14(8): 704–5

    Article  PubMed  Google Scholar 

  4. Tariot PN, Farlow MR, Grossberg GT. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004; 291(3): 317–24

    Article  PubMed  CAS  Google Scholar 

  5. Bakchine S, Loft H. Memantine treatment in patients with mild to moderate Alzheimer’s disease: results of a randomised, double-blind, placebo-controlled 6-month study. J Alzheimers Dis 2008; 13(1): 97–107

    PubMed  CAS  Google Scholar 

  6. Schmidt R, Ropele S, Pendl B, et al. Longitudinal multimodal imaging in mild to moderate Alzheimer disease: a pilot study with memantine. J Neurol Neurosurg Psychiatry 2008; 79(12): 1312–17

    Article  PubMed  CAS  Google Scholar 

  7. Parsons CG, Stöffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system — too little activation is bad, too much is even worse. Neuropharmacology 2007; 53(6): 699–723

    Article  PubMed  CAS  Google Scholar 

  8. Seeman P, Caruso C, Lasaga M. Memantine agonist action at dopamine D2High receptors. Synapse 2008; 62(2): 149–53

    Article  PubMed  CAS  Google Scholar 

  9. Giustizieri M, Cucchiaroni ML, Guatteo E, et al. Memantine inhibits ATP-dependent K+ conductances in dopamine neurons of the rat substantia nigra pars compacta. J Pharmacol Exp Ther 2007; 322(2): 721–9

    Article  PubMed  CAS  Google Scholar 

  10. Hesse S, Ballaschke O, Barthel H, et al. Dopamine transporter imaging in adult patients with attention-deficit/hyperactivity disorder. Psychiatry Res 2009; 171(2): 120–8

    Article  PubMed  CAS  Google Scholar 

  11. Gilden DL, Marusich LR. Contraction of time in attention-deficit hyperactivity disorder. Neuropsychology 2009; 23(2): 265–9

    Article  PubMed  Google Scholar 

  12. Monastero R, Camarda C, Pipia C, et al. Visual hallucinations and agitation in Alzheimer’s disease due to memantine: report of three cases. J Neurol Neurosurg Psychiatry 2007; 78(5): 546

    Article  PubMed  Google Scholar 

  13. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007; 8(9): 700–11

    Article  PubMed  CAS  Google Scholar 

  14. Fransson P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 2006; 44(14): 2836–45

    Article  PubMed  Google Scholar 

  15. Gusnard DA, Akbudak E, Shulman GL, et al. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A 2001; 98: 4259–64

    Article  PubMed  CAS  Google Scholar 

  16. Broyd SJ, Demanuele C, Debener S, et al. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009; 33(3): 279–96

    Article  PubMed  Google Scholar 

  17. Rombouts S, Barkhof F, Goekoop R, et al. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s. Hum Brain Mapp 2005; 26: 231–9

    Article  PubMed  Google Scholar 

  18. Liu Y, Wang K, Yu C, et al. Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia 2008; 46(6): 1648–56

    Article  PubMed  Google Scholar 

  19. Greicius MD, Srivastava G, Reiss AL, et al. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004; 101: 4637–42

    Article  PubMed  CAS  Google Scholar 

  20. Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005; 25: 7709–17

    Article  PubMed  CAS  Google Scholar 

  21. Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet 2001; 357(9263): 1191–4

    Article  PubMed  CAS  Google Scholar 

  22. Altman DG, Schulz KF, Moher D, et al. The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Ann Intern Med 2001; 134(8): 663–94

    PubMed  CAS  Google Scholar 

  23. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939–44

    Article  PubMed  CAS  Google Scholar 

  24. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993; 43: 2412–4

    Article  PubMed  CAS  Google Scholar 

  25. Rosen WG, Terry RD, Fuld PA, et al. Pathological verification of ischemic score in differentiation of dementias. Ann Neurol 1980; 7(5): 486–8

    Article  PubMed  CAS  Google Scholar 

  26. Protocollo MEM_T V0 [in Italian]. Brescia: Laboratorio di Epidemiologia e Neuroimaging, IRCCS [online]. Available from URL: http://www.centroalzheimer.it/Public/Protocollo_MEM_T0.doc [Accessed 2010 Nov 26]

  27. Lezak MD, Howieson DB, Loring DW, et al. Neuropsychological assessment. 4th ed. New York (NY): Oxford University Press, 2004

    Google Scholar 

  28. Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189–98

    Article  PubMed  CAS  Google Scholar 

  29. Cummings JL, Mega M, Gray K, et al. The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994; 44(12): 2308–14

    Article  PubMed  CAS  Google Scholar 

  30. Eshed I, Althoff CE, Hamm B, et al. Claustrophobia and premature termination of magnetic resonance imaging examinations. J Magn Reson Imaging 2007; 26(2): 401–4

    Article  PubMed  Google Scholar 

  31. Calhoun VD, Adali T, Pearlson GD, et al. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 2001; 14(3): 140–51

    Article  PubMed  CAS  Google Scholar 

  32. Correa N, Adali T, Calhoun VD. Performance of blind source separation algorithms for fMRI analysis using a group ICA method. Magn Reson Imaging 2007; 25(5): 684–94

    Article  PubMed  Google Scholar 

  33. Maldjian JA, Laurienti PJ, Kraft RA, et al. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19(3): 1233–9

    Article  PubMed  Google Scholar 

  34. Hoyer S. Age as risk factor for sporadic dementia of the Alzheimer type? Ann N Y Acad Sci 1994 May 31; 719: 248–56

    Article  PubMed  CAS  Google Scholar 

  35. Noda M, Nakanishi H, Akaike N. Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide. Neuroscience 1999; 92(4): 1465–74

    Article  PubMed  CAS  Google Scholar 

  36. Harris NG, Plant HD, Inglis BA, et al. Neurochemical changes in the cerebral cortex of treated and untreated hydrocephalic rat pups quantified with in vitro 1H-NMR spectroscopy. J Neurochem 1997; 68(1): 305–12

    Article  PubMed  CAS  Google Scholar 

  37. Magistretti PJ, Pellerin L. Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 1999 Oct; 14: 177–82

    PubMed  CAS  Google Scholar 

  38. Wu J, Anwyl R, Rowan MJ. beta-Amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. Neuroreport 1995; 6(17): 2409–13

    Article  PubMed  CAS  Google Scholar 

  39. Johnson JW, Kotermanski SE. Mechanism of action of memantine. Curr Opin Pharmacol 2006; 6(1): 61–7

    Article  PubMed  CAS  Google Scholar 

  40. Gruetter R, Seaquist ER, Kim S, et al. Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 1998; 20(4–5): 380–8

    Article  PubMed  CAS  Google Scholar 

  41. Shen J, Petersen KF, Behar KL, et al. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci U S A 1999; 96(14): 8235–40

    Article  PubMed  CAS  Google Scholar 

  42. Sibson NR, Dhankhar A, Mason GF, et al. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 1998; 95(1): 316–21

    Article  PubMed  CAS  Google Scholar 

  43. Aubert A, Pellerin L, Magistretti PJ, et al. A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc Natl Acad Sci USA 2007; 104(10): 4188–93

    Article  PubMed  CAS  Google Scholar 

  44. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 1999; 354(1387): 1155–63

    Article  PubMed  CAS  Google Scholar 

  45. Lin AP, Shic F, Enriquez C, et al. Reduced glutamate neurotransmission in patients with Alzheimer’s disease: an in vivo (13) C magnetic resonance spectroscopy study. MAGMA 2003; 16(1): 29–42

    Article  PubMed  CAS  Google Scholar 

  46. Parpura-Gill A, Beitz D, Uemura E. The inhibitory effects of beta amyloid on glutamate and glucose uptakes by cultured astrocytes. Brain Res 1997; 754: 65–71

    Article  PubMed  CAS  Google Scholar 

  47. Minoshima S, Giordani B, Berent S, et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997; 42: 85–94

    Article  PubMed  CAS  Google Scholar 

  48. Damoiseaux JS, Keller KE, Menon V, et al. Default mode network connectivity tracks clinical progression in Alzheimer’s disease. San Francisco (CA): Organization for the Human Brain Mapping, 2009

    Google Scholar 

  49. Peters M, Romieu P, Maurice T, et al. Involvement of the sigma 1 receptor in the modulation of dopaminergic transmission by amantadine. Eur J Neurosci 2004; 19(8): 2212–20

    Article  Google Scholar 

  50. Meisner F, Scheller C, Kneitz S, et al. Memantine upregulates BDNF and prevents dopamine deficits in SIV-infected macaques: a novel pharmacological action of memantine. Neuropsychopharmacology 2008; 33(9): 2228–36

    Article  PubMed  CAS  Google Scholar 

  51. Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol 2007; 3(2): e17

    Article  PubMed  Google Scholar 

  52. Thomas TC, Grandy DK, Gerhardt GA, et al. Decreased dopamine D4 receptor expression increases extracellular glutamate and alters its regulation in mouse striatum. Neuropsychopharmacology 2009; 34(2): 436–45

    Article  PubMed  CAS  Google Scholar 

  53. Konradi C, Leveque JC, Hyman SE. Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J Neurosci 1996; 16(13): 4231–9

    PubMed  CAS  Google Scholar 

  54. Keefe KA, Ganguly A. Effects of NMDA receptor antagonists on D1 dopamine receptor-mediated changes in striatal immediate early gene expression: evidence for involvement of pharmacologically distinct NMDA receptors? Dev Neurosci 1998; 20(2–3): 216–8

    Article  PubMed  CAS  Google Scholar 

  55. Northoff G, Walter M, Schulte RF, et al. GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 2007; 10(12): 1515–7

    Article  PubMed  CAS  Google Scholar 

  56. Molinaro G, Battaglia G, Riozzi B, et al. Memantine treatment reduces the expression of the K(+)/CL(−)cotrans-porter KCC2 in the hippocampus and cerebral cortex, and attenuates behavioural responses mediated by GABA(A) receptor activation in mice. Brain Res 2009; 1265: 75–9

    Article  PubMed  CAS  Google Scholar 

  57. Song MS, Rauw G, Baker GB, et al. Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation. Eur J Neurosci 2008; 28(10): 1989–2002

    Article  PubMed  CAS  Google Scholar 

  58. Frisoni GB, Fox NC, Jack CR, et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010 Feb; 6(2): 67–77

    Article  PubMed  Google Scholar 

  59. Lin Q, Zheng Y, Yin F, et al. A fast algorithm for one-unit ICA-R. Information Sci 2007; 177: 1265–75

    Article  Google Scholar 

Download references

Acknowledgements

This work has been co-funded by research grant N. 125/2004 of the Italian Ministry of Health, Ricerca Finalizzata “Malattie neurodegenerative legate all’invecchiamento: dalla patogenesi alle prospettive terapeutiche per un progetto traslazionale” and by an unrestricted grant by Lundbeck Italia SpA Pharmaceutical.

Marco Lorenzi, Alberto Beltramello, Nicola B. Mercuri, Elisa Canu, Giada Zoccatelli, Francesca B. Pizzini, Franco Alessandrini, Maria Cotelli, Sandra Rosini, Daniela Costardi and Carlo Caltagirone have no conflicts of interest to declare. Giovanni B. Frisoni has received fees for scientific consultations from Lundbeck International.

The authors are very grateful to Dr Melissa Romano, Laboratory of Epidemiology, Neuroimaging and Telemedicine -LENITEM-, Istituto di Ricerca e Cura a Carattere Scientifico San Giovanni di Dio Fatebenefratelli, Brescia, Italy, for her excellent organizational contribution to the realization and progression of the study, and to Dr Chiara Barattieri of the same institution for her contribution to the proof reading of the manuscript. We wish to thank the patients and their families for their continuous and admirable cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lorenzi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzi, M., Beltramello, A., Mercuri, N.B. et al. Effect of Memantine on Resting State Default Mode Network Activity in Alzheimer’s Disease. Drugs Aging 28, 205–217 (2011). https://doi.org/10.2165/11586440-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11586440-000000000-00000

Keywords

Navigation