Skip to main content
Log in

Role of Ghrelin in the Pathophysiology of Eating Disorders

Implications for Pharmacotherapy

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Ghrelin is the only known circulating orexigenic hormone. It increases food intake by interacting with hypothalamic and brainstem circuits involved in energy balance, as well as reward-related brain areas. A heightened gutbrain ghrelin axis is an emerging feature of certain eating disorders such as anorexia nervosa and Prader-Willi syndrome. In common obesity, ghrelin levels are lowered, whereas post-meal ghrelin levels remain higher than in lean individuals. Agents that interfere with ghrelin signalling have therapeutic potential for eating disorders, including obesity. However, most of these drugs are only in the preclinical phase of development. Data obtained so far suggest that ghrelin agonists may have potential in the treatment of anorexia nervosa, while ghrelin antagonists seem promising for other eating disorders such as obesity and Prader-Willi syndrome. However, large clinical trials are needed to evaluate the efficacy and safety of these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growthhormone-releasing acylated peptide from stomach. Nature 1999; 402(6762): 656–60

    Article  PubMed  CAS  Google Scholar 

  2. Bowers CY, Momany FA, Reynolds GA, et al. On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. Endocrinology 1984; 114(5): 1537–45

    Article  PubMed  CAS  Google Scholar 

  3. Patchett AA, Nargund RP, Tata JR, et al. Design and biological activities of L-163,191 (MK-0677): a potent, orally active growth hormone secretagogue. Proc Natl Acad Sci U S A 1995; 92(15): 7001–5

    Article  PubMed  CAS  Google Scholar 

  4. Chapman IM, Pescovitz OH, Murphy G, et al. Oral administration of growth hormone (GH) releasing peptidemimetic MK-677 stimulates the GH/insulin-like growth factor-I axis in selected GH-deficient adults. J Clin Endocrinol Metab 1997; 82(10): 3455–63

    Article  PubMed  CAS  Google Scholar 

  5. Bach MA, Rockwood K, Zetterberg C, et al. The effects of MK-0677, an oral growth hormone secretagogue, in patients with hip fracture. J Am Geriatr Soc 2004; 52(4): 516–23

    Article  PubMed  Google Scholar 

  6. Adunsky A, Chandler J, Heyden N, et al. MK-0677 (ibutamoren mesylate) for the treatment of patients recovering from hip fracture: a multicenter, randomized, placebocontrolled phase IIb study. Arch Gerontol Geriatr 2011; 53(2): 183–9

    Article  PubMed  CAS  Google Scholar 

  7. Copinschi G, Leproult R, Van Onderbergen A, et al. Prolonged oral treatment with MK-677, a novel growth hormone secretagogue, improves sleep quality in man. Neuroendocrinology 1997; 66(4): 278–86

    Article  PubMed  CAS  Google Scholar 

  8. Svensson J, Lonn L, Jansson JO, et al. Two-month treatment of obese subjects with the oral growth hormone (GH) secretagogue MK-677 increases GH secretion, fatfree mass, and energy expenditure. J Clin Endocrinol Metab 1998; 83(2): 362–9

    Article  PubMed  CAS  Google Scholar 

  9. Murphy MG, Bach MA, Plotkin D, et al. Oral administration of the growth hormone secretagogue MK-677 increases markers of bone turnover in healthy and functionally impaired elderly adults: the MK-677 Study Group. J Bone Miner Res 1999; 14(7): 1182–8

    Article  PubMed  CAS  Google Scholar 

  10. Nass R, Pezzoli SS, Oliveri MC, et al. Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: a randomized trial. Ann Intern Med 2008; 149(9): 601–11

    PubMed  Google Scholar 

  11. Dickson SL, Leng G, Robinson IC. Growth hormone release evoked by electrical stimulation of the arcuate nucleus in anesthetized male rats. Brain Res 1993; 623(1): 95–100

    Article  PubMed  CAS  Google Scholar 

  12. Dickson SL, Luckman SM. Induction of c-fos messenger ribonucleic acid in neuropeptide Y and growth hormone (GH)-releasing factor neurons in the rat arcuate nucleus following systemic injection of the GH secretagogue, GH-releasing peptide-6. Endocrinology 1997; 138(2): 771–7

    Article  PubMed  CAS  Google Scholar 

  13. Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996; 273(5277): 974–7

    Article  PubMed  CAS  Google Scholar 

  14. Locke W, Kirgis HD, Bowers CY, et al. Intracerebroventricular growth-hormone-releasing peptide-6 stimulates eating without affecting plasma growth hormone responses in rats. Life Sci 1995; 56(16): 1347–52

    Article  PubMed  CAS  Google Scholar 

  15. Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000; 141(11): 4255–61

    Article  PubMed  CAS  Google Scholar 

  16. Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 2002; 87(6): 2988–91

    Article  PubMed  CAS  Google Scholar 

  17. Jeffery PL, Duncan RP, Yeh AH, et al. Expression of the ghrelin axis in the mouse: an exon 4-deleted mouse proghrelin variant encodes a novel C terminal peptide. Endocrinology 2005; 146(1): 432–40

    Article  PubMed  CAS  Google Scholar 

  18. Zhu X, Cao Y, Voogd K, et al. On the processing of proghrelin to ghrelin. J Biol Chem 2006; 281(50): 38867–70

    Article  PubMed  CAS  Google Scholar 

  19. Hosoda H, Kojima M, Matsuo H, et al. Ghrelin and desacyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 2000; 279(3): 909–13

    Article  PubMed  CAS  Google Scholar 

  20. Liu J, Prudom CE, Nass R, et al. Novel ghrelin assays provide evidence for independent regulation of ghrelin acylation and secretion in healthy young men. J Clin Endocrinol Metab 2008; 93(5): 1980–7

    Article  PubMed  CAS  Google Scholar 

  21. Patterson M, Murphy KG, le Roux CW, et al. Characterization of ghrelin-like immunoreactivity in human plasma. J Clin Endocrinol Metab 2005; 90(4): 2205–11

    Article  PubMed  CAS  Google Scholar 

  22. Gardiner J, Bloom S. Ghrelin gets its GOAT. Cell Metab 2008; 7(3): 193–4

    Article  PubMed  CAS  Google Scholar 

  23. Gutierrez JA, Solenberg PJ, Perkins DR, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci U S A 2008; 105(17): 6320–5

    Article  PubMed  CAS  Google Scholar 

  24. Yang J, Brown MS, Liang G, et al. Identification of the acyltransferase that octanoylates ghrelin, an appetitestimulating peptide hormone. Cell 2008; 132(3): 387–96

    Article  PubMed  CAS  Google Scholar 

  25. Hattori N, Saito T, Yagyu T, et al. GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. J Clin Endocrinol Metab 2001; 86(9): 4284–91

    Article  PubMed  CAS  Google Scholar 

  26. Cassoni P, Papotti M, Ghe C, et al. Identification, characterization, and biological activity of specific receptors for natural (ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines. J Clin Endocrinol Metab 2001; 86(4): 1738–45

    Article  PubMed  CAS  Google Scholar 

  27. Guan XM, Yu H, Palyha OC, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 1997; 48(1): 23–9

    Article  PubMed  CAS  Google Scholar 

  28. Zigman JM, Jones JE, Lee CE, et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 2006; 494(3): 528–48

    Article  PubMed  CAS  Google Scholar 

  29. Holst B, Cygankiewicz A, Jensen TH, et al. High constitutive signaling of the ghrelin receptor: identification of a potent inverse agonist. Mol Endocrinol 2003; 17(11): 2201–10

    Article  PubMed  CAS  Google Scholar 

  30. Petersen PS, Woldbye DP, Madsen AN, et al. In vivo characterization of high basal signaling from the ghrelin receptor. Endocrinology 2009; 150(11): 4920–30

    Article  PubMed  CAS  Google Scholar 

  31. Jiang H, Betancourt L, Smith RG. Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol 2006; 20(8): 1772–85

    Article  PubMed  CAS  Google Scholar 

  32. Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab 2001; 86(10): 4753–8

    Article  PubMed  CAS  Google Scholar 

  33. Bodosi B, Gardi J, Hajdu I, et al. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol 2004; 287(5): R1071–9

    Article  PubMed  CAS  Google Scholar 

  34. Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001; 50(8): 1714–9

    Article  PubMed  CAS  Google Scholar 

  35. Cummings DE, Frayo RS, Marmonier C, et al. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab 2004; 287(2): E297–304

    Article  PubMed  CAS  Google Scholar 

  36. Drazen DL, Vahl TP, D’Alessio DA, et al. Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology 2006; 147(1): 23–30

    Article  PubMed  CAS  Google Scholar 

  37. Frecka JM, Mattes RD. Possible entrainment of ghrelin to habitual meal patterns in humans. Am J Physiol Gastrointest Liver Physiol 2008; 294(3): G699–707

    Article  PubMed  CAS  Google Scholar 

  38. Lawrence CB, Snape AC, Baudoin FM, et al. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology 2002; 143(1): 155–62

    Article  PubMed  CAS  Google Scholar 

  39. Tolle V, Bassant MH, Zizzari P, et al. Ultradian rhythmicity of ghrelin secretion in relation with GH, feeding behavior, and sleep-wake patterns in rats. Endocrinology 2002; 143(4): 1353–61

    Article  PubMed  CAS  Google Scholar 

  40. Zizzari P, Hassouna R, Longchamps R, et al. Meal anticipatory rise in acylated ghrelin at dark onset is blunted after long-term fasting in rats. J Neuroendocrinol 2011; 23(9): 804–14

    Article  PubMed  CAS  Google Scholar 

  41. Asakawa A, Inui A, Kaga T, et al. Ghrelin is an appetitestimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 2001; 120(2): 337–45

    Article  PubMed  CAS  Google Scholar 

  42. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000; 407(6806): 908–13

    Article  PubMed  CAS  Google Scholar 

  43. Williams DL, Cummings DE, Grill HJ, et al. Meal-related ghrelin suppression requires postgastric feedback. Endocrinology 2003; 144(7): 2765–7

    Article  PubMed  CAS  Google Scholar 

  44. Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000; 141(11): 4325–8

    Article  PubMed  CAS  Google Scholar 

  45. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature 2001; 409(6817): 194–8

    Article  PubMed  CAS  Google Scholar 

  46. Druce MR, Neary NM, Small CJ, et al. Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers. Int J Obes (Lond) 2006; 30(2): 293–6

    Article  CAS  Google Scholar 

  47. Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 2001; 86(12): 5992–5

    Article  PubMed  CAS  Google Scholar 

  48. Kamegai J, Tamura H, Shimizu T, et al. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats. Diabetes 2001; 50(11): 2438–43

    Article  PubMed  CAS  Google Scholar 

  49. Thompson NM, Gill DA, Davies R, et al. Ghrelin and desoctanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor. Endocrinology 2004; 145(1): 234–42

    Article  PubMed  CAS  Google Scholar 

  50. Salome N, Hansson C, Taube M, et al. On the central mechanism underlying ghrelin’s chronic pro-obesity effects in rats: new insights from studies exploiting a potent ghrelin receptor (GHS-R1A) antagonist. J Neuroendocrinol 2009 Sep; 21(9): 777–85

    Article  PubMed  CAS  Google Scholar 

  51. Pfluger PT, Kirchner H, Gunnel S, et al. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. Am J Physiol Gastrointest Liver Physiol 2008; 294(3): G610–8

    Article  PubMed  CAS  Google Scholar 

  52. Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol 2003; 23(22): 7973–81

    Article  PubMed  CAS  Google Scholar 

  53. Sun Y, Wang P, Zheng H, et al. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A 2004; 101(13): 4679–84

    Article  PubMed  CAS  Google Scholar 

  54. Wortley KE, Anderson KD, Garcia K, et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci U S A 2004; 101(21): 8227–32

    Article  PubMed  CAS  Google Scholar 

  55. Wortley KE, del Rincon JP, Murray JD, et al. Absence of ghrelin protects against early-onset obesity. J Clin Invest 2005; 115(12): 3573–8

    Article  PubMed  CAS  Google Scholar 

  56. Zigman JM, Nakano Y, Coppari R, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest 2005; 115(12): 3564–72

    Article  PubMed  CAS  Google Scholar 

  57. Blum ID, Patterson Z, Khazall R, et al. Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience 2009; 164(2): 351–9

    Article  PubMed  CAS  Google Scholar 

  58. Verhagen LA, Egecioglu E, Luijendijk MC, et al. Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. Eur Neuropsychopharmacol 2011; 21(5): 384–92

    Article  PubMed  CAS  Google Scholar 

  59. Theander-Carrillo C, Wiedmer P, Cettour-Rose P, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 2006; 116(7): 1983–93

    Article  PubMed  CAS  Google Scholar 

  60. Kobelt P, Wisser AS, Stengel A, et al. Peripheral injection of ghrelin induces Fos expression in the dorsomedial hypothalamic nucleus in rats. Brain Res 2008; 1204: 77–86

    Article  PubMed  CAS  Google Scholar 

  61. Luckman SM, Rosenzweig I, Dickson SL. Activation of arcuate nucleus neurons by systemic administration of leptin and growth hormone-releasing peptide-6 in normal and fasted rats. Neuroendocrinology 1999; 70(2): 93–100

    Article  PubMed  CAS  Google Scholar 

  62. Ruter J, Kobelt P, Tebbe JJ, et al. Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats. Brain Res 2003; 991(1–2): 26–33

    Article  PubMed  CAS  Google Scholar 

  63. Solomon A, De Fanti BA, Martinez JA. Peripheral ghrelin participates in the glucostatic signaling mediated by the ventromedial and lateral hypothalamus neurons. Peptides 2006; 27(7): 1607–15

    Article  PubMed  CAS  Google Scholar 

  64. Hewson AK, Dickson SL. Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol 2000; 12(11): 1047–9

    Article  PubMed  CAS  Google Scholar 

  65. Wang L, Saint-Pierre DH, Tache Y. Peripheral ghrelin selectively increases Fos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett 2002; 325(1): 47–51

    Article  PubMed  CAS  Google Scholar 

  66. Andrews ZB, Liu ZW, Walllingford N, et al. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 2008; 454(7206): 846–51

    Article  PubMed  CAS  Google Scholar 

  67. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003; 37(4): 649–61

    Article  PubMed  CAS  Google Scholar 

  68. Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 2004; 145(6): 2607–12

    Article  PubMed  CAS  Google Scholar 

  69. Kamegai J, Tamura H, Shimizu T, et al. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology 2000; 141(12): 4797–800

    Article  PubMed  CAS  Google Scholar 

  70. Luquet S, Phillips CT, Palmiter RD. NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides 2007; 28(2): 214–25

    Article  PubMed  CAS  Google Scholar 

  71. Keen-Rhinehart E, Bartness TJ. MTII attenuates ghrelin-and food deprivation-induced increases in food hoarding and food intake. Horm Behav 2007; 52(5): 612–20

    Article  PubMed  CAS  Google Scholar 

  72. Olszewski PK, Bomberg EM, Grace MK, et al. Alpha-melanocyte stimulating hormone and ghrelin: central interaction in feeding control. Peptides 2007; 28(10): 2084–9

    Article  PubMed  CAS  Google Scholar 

  73. Fry M, Ferguson AV. Ghrelin modulates electrical activity of area postrema neurons. Am J Physiol Regul Integr Comp Physiol 2009; 296(3): R485–92

    Article  PubMed  CAS  Google Scholar 

  74. Li Y, Wu X, Zhao Y, et al. Ghrelin acts on the dorsal vagal complex to stimulate pancreatic protein secretion. Am J Physiol Gastrointest Liver Physiol 2006; 290(6): G1350–8

    Article  PubMed  CAS  Google Scholar 

  75. Faulconbridge LF, Cummings DE, Kaplan JM, et al. Hyperphagic effects of brainstem ghrelin administration. Diabetes 2003; 52(9): 2260–5

    Article  PubMed  CAS  Google Scholar 

  76. Gilg S, Lutz TA. The orexigenic effect of peripheral ghrelin differs between rats of different age and with different baseline food intake, and it may in part be mediated by the area postrema. Physiol Behav 2006; 87(2): 353–9

    Article  PubMed  CAS  Google Scholar 

  77. Date Y, Shimbara T, Koda S, et al. Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab 2006; 4(4): 323–31

    Article  PubMed  CAS  Google Scholar 

  78. Skibicka KP, Dickson SL. Ghrelin and food reward: the story of potential underlying substrates. Peptides 2011; 32(11): 2265–73

    Article  PubMed  CAS  Google Scholar 

  79. Malik S, McGlone F, Bedrossian D, et al. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 2008; 7(5): 400–9

    Article  PubMed  CAS  Google Scholar 

  80. Abizaid A, Liu ZW, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 2006; 116(12): 3229–39

    Article  PubMed  CAS  Google Scholar 

  81. Skibicka KP, Hansson C, Alvarez-Crespo M, et al. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 2011 Apr 28; 180: 129–37

    Article  PubMed  CAS  Google Scholar 

  82. Diano S, Farr SA, Benoit SC, et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 2006; 9(3): 381–8

    Article  PubMed  CAS  Google Scholar 

  83. Banks WA, Tschop M, Robinson SM, et al. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 2002; 302(2): 822–7

    Article  PubMed  CAS  Google Scholar 

  84. Lu S, Guan JL, Wang QP, et al. Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus. Neurosci Lett 2002; 321(3): 157–60

    Article  PubMed  CAS  Google Scholar 

  85. Mozid AM, Tringali G, Forsling ML, et al. Ghrelin is released from rat hypothalamic explants and stimulates corticotrophin-releasing hormone and arginine-vasopressin. Horm Metab Res 2003; 35(8): 455–9

    Article  PubMed  CAS  Google Scholar 

  86. Naleid AM, Grace MK, Cummings DE, et al. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 2005; 26(11): 2274–9

    Article  PubMed  CAS  Google Scholar 

  87. Disse E, Bussier AL, Veyrat-Durebex C, et al. Peripheral ghrelin enhances sweet taste food consumption and preference, regardless of its caloric content. Physiol Behav 2010; 101(2): 277–81

    Article  PubMed  CAS  Google Scholar 

  88. Egecioglu E, Jerlhag E, Salome N, et al. Ghrelin increases intake of rewarding food in rodents. Addict Biol 2010; 15(3): 304–11

    Article  PubMed  CAS  Google Scholar 

  89. Perello M, Sakata I, Birnbaum S, et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry 2010; 67(9): 880–6

    Article  PubMed  CAS  Google Scholar 

  90. King SJ, Isaacs AM, O’Farrell E, et al. Motivation to obtain preferred foods is enhanced by ghrelin in the ventral tegmental area. Horm Behav 2011; 60(5): 572–80

    Article  PubMed  CAS  Google Scholar 

  91. Skibicka KP, Hansson C, Egecioglu E, et al. Role of ghrelin in food reward: impact of ghrelin on sucrose selfadministration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict Biol 2012; 17(1): 95–107

    Article  PubMed  CAS  Google Scholar 

  92. Weinberg ZY, Nicholson ML, Currie PJ. 6-Hydroxydopamine lesions of the ventral tegmental area suppress ghrelin’s ability to elicit food-reinforced behavior. Neurosci Lett 2011; 499(2): 70–3

    Article  PubMed  CAS  Google Scholar 

  93. Jerlhag E, Egecioglu E, Dickson SL, et al. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol 2006; 11(1): 45–54

    Article  PubMed  CAS  Google Scholar 

  94. Jerlhag E, Egecioglu E, Dickson SL, et al. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol 2007; 12(1): 6–16

    Article  PubMed  CAS  Google Scholar 

  95. Quarta D, Di Francesco C, Melotto S, et al. Systemic administration of ghrelin increases extracellular dopamine in the shell but not the core subdivision of the nucleus accumbens. Neurochem Int 2009; 54(2): 89–94

    Article  PubMed  CAS  Google Scholar 

  96. Clifford PS, Rodriguez J, Schul D, et al. Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors. Addict Biol. Epub 2011 Jul 25

  97. Davis KW, Wellman PJ, Clifford PS. Augmented cocaine conditioned place preference in rats pretreated with systemic ghrelin. Regul Pept 2007; 140(3): 148–52

    Article  PubMed  CAS  Google Scholar 

  98. Jerlhag E, Egecioglu E, Landgren S, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S A 2009; 106(27): 11318–23

    Article  PubMed  CAS  Google Scholar 

  99. Jerlhag E, Egecioglu E, Dickson SL, et al. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology (Berl) 2010; 211(4): 415–22

    Article  CAS  Google Scholar 

  100. Jerlhag E, Landgren S, Egecioglu E, et al. The alcoholinduced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice. Alcohol 2011; 45(4): 341–7

    Article  PubMed  CAS  Google Scholar 

  101. Kaur S, Ryabinin AE. Ghrelin receptor antagonism decreases alcohol consumption and activation of perioculomotor urocortin-containing neurons. Alcohol Clin Exp Res 2010; 34(9): 1525–34

    Article  PubMed  CAS  Google Scholar 

  102. Wellman PJ, Davis KW, Nation JR. Augmentation of cocaine hyperactivity in rats by systemic ghrelin. Regul Pept 2005; 125(1-3): 151–4

    Article  PubMed  CAS  Google Scholar 

  103. Wellman PJ, Hollas CN, Elliott AE. Systemic ghrelin sensitizes cocaine-induced hyperlocomotion in rats. Regul Pept 2008; 146(1-3): 33–7

    Article  PubMed  CAS  Google Scholar 

  104. Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334(5): 292–5

    Article  PubMed  CAS  Google Scholar 

  105. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257(1): 79–83

    Article  PubMed  CAS  Google Scholar 

  106. Tomasik PJ, Sztefko K, Malek A. GLP-1 as a satiety factor in children with eating disorders. Horm Metab Res 2002; 34(2): 77–80

    Article  PubMed  CAS  Google Scholar 

  107. Milewicz A, Bidzinska B, Mikulski E, et al. Influence of obesity and menopausal status on serum leptin, cholecystokinin, galanin and neuropeptide Y levels. Gynecol Endocrinol 2000; 14(3): 196–203

    Article  PubMed  CAS  Google Scholar 

  108. Wisen O, Bjorvell H, Cantor P, et al. Plasma concentrations of regulatory peptides in obesity following modified sham feeding (MSF) and a liquid test meal. Regul Pept 1992; 39(1): 43–54

    Article  PubMed  CAS  Google Scholar 

  109. Renshaw D, Batterham RL. Peptide YY: a potential therapy for obesity. Curr Drug Targets 2005; 6(2): 171–9

    Article  PubMed  CAS  Google Scholar 

  110. Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci 2003; 994: 162–8

    Article  PubMed  CAS  Google Scholar 

  111. Hall J, Roberts R, Vora N. Energy homoeostasis: the roles of adipose tissue-derived hormones, peptide YY and ghrelin. Obes Facts 2009; 2(2): 117–25

    Article  PubMed  CAS  Google Scholar 

  112. Goldstone AP, Thomas EL, Brynes AE, et al. Elevated fasting plasma ghrelin in Prader-Willi syndrome adults is not solely explained by their reduced visceral adiposity and insulin resistance. J Clin Endocrinol Metab 2004; 89(4): 1718–26

    Article  PubMed  CAS  Google Scholar 

  113. Paik KH, Jin DK, Lee KH, et al. Peptide YY, cholecystokinin, insulin and ghrelin response to meal did not change, but mean serum levels of insulin is reduced in children with Prader-Willi syndrome. J Korean Med Sci 2007; 22(3): 436–41

    Article  PubMed  CAS  Google Scholar 

  114. Gimenez-Palop O, Gimenez-Perez G, Mauricio D, et al. A lesser postprandial suppression of plasma ghrelin in Prader-Willi syndrome is associated with low fasting and a blunted postprandial PYY response. Clin Endocrinol 2007; 66(2): 198–204

    Article  CAS  Google Scholar 

  115. Purtell L, Sze L, Loughnan G, et al. In adults with Prader-Willi syndrome, elevated ghrelin levels are more consistent with hyperphagia than high PYY and GLP-1 levels. Neuropeptides 2011; 45(4): 301–7

    Article  PubMed  CAS  Google Scholar 

  116. Butler MG, Bittel DC, Talebizadeh Z. Plasma peptide YY and ghrelin levels in infants and children with Prader-Willi syndrome. J Pediatr Endocrinol Metab 2004; 17(9): 1177–84

    Article  PubMed  CAS  Google Scholar 

  117. Goldstone AP, Patterson M, Kalingag N, et al. Fasting and postprandial hyperghrelinemia in Prader-Willi syndrome is partially explained by hypoinsulinemia, and is not due to peptide YY3-36 deficiency or seen in hypothalamic obesity due to craniopharyngioma. J Clin Endocrinol Metab 2005; 90(5): 2681–90

    Article  PubMed  CAS  Google Scholar 

  118. Haqq AM, Muehlbauer MJ, Newgard CB, et al. The metabolic phenotype of Prader-Willi syndrome (PWS) in childhood: heightened insulin sensitivity relative to body mass index. J Clin Endocrinol Metab 2011; 96(1): E225–32

    Article  PubMed  CAS  Google Scholar 

  119. Kennedy L, Bittel DC, Kibiryeva N, et al. Circulating adiponectin levels, body composition and obesity-related variables in Prader-Willi syndrome: comparison with obese subjects. Int J Obes (Lond) 2006; 30(2): 382–7

    Article  CAS  Google Scholar 

  120. Haqq AM, Muehlbauer M, Svetkey LP, et al. Altered distribution of adiponectin isoforms in children with Prader-Willi syndrome (PWS): association with insulin sensitivity and circulating satiety peptide hormones. Clin Endocrinol 2007; 67(6): 944–51

    Article  CAS  Google Scholar 

  121. Festen DA, van Toorenenbergen A, Duivenvoorden HJ, et al. Adiponectin levels in prepubertal children with Prader-Willi syndrome before and during growth hormone therapy. J Clin Endocrinol Metab 2007; 92(4): 1549–54

    Article  PubMed  CAS  Google Scholar 

  122. Proto C, Romualdi D, Cento RM, et al. Free and total leptin serum levels and soluble leptin receptors levels in two models of genetic obesity: the Prader-Willi and the Down syndromes. Metabolism 2007; 56(8): 1076–80

    Article  PubMed  CAS  Google Scholar 

  123. Monteleone P. New frontiers in endocrinology of eating disorders. Curr Top Behav Neurosci 2011; 6: 189–208

    Article  PubMed  Google Scholar 

  124. Germain N, Galusca B, Le Roux CW, et al. Constitutional thinness and lean anorexia nervosa display opposite concentrations of peptide YY, glucagon-like peptide 1, ghrelin, and leptin. Am J Clin Nutr 2007; 85(4): 967–71

    PubMed  CAS  Google Scholar 

  125. Brambilla F, Monteleone P, Maj M. Glucagon-like peptide-1 secretion in bulimia nervosa. Psychiatry Res 2009; 169(1): 82–5

    Article  PubMed  CAS  Google Scholar 

  126. Naessen S, Carlstrom K, Holst JJ, et al. Women with bulimia nervosa exhibit attenuated secretion of glucagonlike peptide 1, pancreatic polypeptide, and insulin in response to a meal. Am J Clin Nutr 2011; 94(4): 967–72

    Article  PubMed  CAS  Google Scholar 

  127. Adami GF, Campostano A, Cella F, et al. Serum leptin concentration in obese patients with binge eating disorder. Int J Obes Relat Metab Disord 2002; 26(8): 1125–8

    Article  PubMed  CAS  Google Scholar 

  128. Munsch S, Biedert E, Meyer AH, et al. CCK, ghrelin, and PYY responses in individuals with binge eating disorder before and after a cognitive behavioral treatment (CBT). Physiol Behav 2009; 97(1): 14–20

    Article  PubMed  CAS  Google Scholar 

  129. Geliebter A, Gluck ME, Hashim SA. Plasma ghrelin concentrations are lower in binge-eating disorder. J Nutr 2005; 135(5): 1326–30

    PubMed  CAS  Google Scholar 

  130. Geliebter A, Hashim SA, Gluck ME. Appetite-related gut peptides, ghrelin, PYY, and GLP-1 in obese women with and without binge eating disorder (BED). Physiol Behav 2008; 94(5): 696–9

    Article  PubMed  CAS  Google Scholar 

  131. Monteleone P, Fabrazzo M, Martiadis V, et al. Opposite changes in circulating adiponectin in women with bulimia nervosa or binge eating disorder. J Clin Endocrinol Metab 2003; 88(11): 5387–91

    Article  PubMed  CAS  Google Scholar 

  132. Geliebter A, Yahav EK, Gluck ME, et al. Gastric capacity, test meal intake, and appetitive hormones in binge eating disorder. Physiol Behav 2004; 81(5): 735–40

    Article  PubMed  CAS  Google Scholar 

  133. Vander Wal JS. Night eating syndrome: a critical review of the literature. Clin Psychol Rev 2012; 32(1): 49–59

    Article  Google Scholar 

  134. Fontaine KR, Redden DT, Wang C, et al. Years of life lost due to obesity. JAMA 2003; 289(2): 187–93

    Article  PubMed  Google Scholar 

  135. Must A, Spadano J, Coakley EH, et al. The disease burden associated with overweight and obesity. JAMA 1999; 282(16): 1523–9

    Article  PubMed  CAS  Google Scholar 

  136. Sowers JR. Obesity as a cardiovascular risk factor. Am J Med 2003; 115 Suppl. 8A: 37S–41S

    Article  PubMed  CAS  Google Scholar 

  137. Sjostrom L, Narbro K, Sjostrom CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007; 357(8): 741–52

    Article  PubMed  Google Scholar 

  138. Morpurgo PS, Resnik M, Agosti F, et al. Ghrelin secretion in severely obese subjects before and after a 3-week integrated body mass reduction program. J Endocrinol Invest 2003; 26(8): 723–7

    PubMed  CAS  Google Scholar 

  139. Tschop M, Weyer C, Tataranni PA, et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001; 50(4): 707–9

    Article  PubMed  CAS  Google Scholar 

  140. Monteleone P, Fabrazzo M, Tortorella A, et al. Circulating ghrelin is decreased in non-obese and obese women with binge eating disorder as well as in obese non-binge eating women, but not in patients with bulimia nervosa. Psychoneuroendocrinology 2005; 30(3): 243–50

    Article  PubMed  CAS  Google Scholar 

  141. Hansen TK, Dall R, Hosoda H, et al. Weight loss increases circulating levels of ghrelin in human obesity. Clin Endocrinol 2002; 56(2): 203–6

    Article  CAS  Google Scholar 

  142. Mohlig M, Spranger J, Otto B, et al. Euglycemic hyperinsulinemia, but not lipid infusion, decreases circulating ghrelin levels in humans. J Endocrinol Invest 2002; 25(11): RC36–8

    PubMed  CAS  Google Scholar 

  143. Levin BE, Dunn-Meynell AA, Ricci MR, et al. Abnormalities of leptin and ghrelin regulation in obesity-prone juvenile rats. Am J Physiol Endocrinol Metab 2003; 285(5): E949–57

    PubMed  CAS  Google Scholar 

  144. Druce MR, Wren AM, Park AJ, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes (Lond) 2005; 29(9): 1130–6

    Article  CAS  Google Scholar 

  145. Greenman Y, Golani N, Gilad S, et al. Ghrelin secretion is modulated in a nutrient- and gender-specific manner. Clin Endocrinol 2004; 60(3): 382–8

    Article  CAS  Google Scholar 

  146. le Roux CW, Patterson M, Vincent RP, et al. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab 2005; 90(2): 1068–71

    Article  PubMed  CAS  Google Scholar 

  147. Yang N, Liu X, Ding EL, et al. Impaired ghrelin response after high-fat meals is associated with decreased satiety in obese and lean Chinese young adults. J Nutr 2009; 139(7): 1286–91

    Article  PubMed  CAS  Google Scholar 

  148. English PJ, Ghatei MA, Malik IA, et al. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab 2002; 87(6): 2984–7

    Article  PubMed  CAS  Google Scholar 

  149. Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002; 346(21): 1623–30

    Article  PubMed  Google Scholar 

  150. Sumithran P, Prendergast LA, Delbridge E, et al. Longterm persistence of hormonal adaptations to weight loss. N Engl J Med 2011; 365(17): 1597–604

    Article  PubMed  CAS  Google Scholar 

  151. Cytos Biotechnology. Phase I/IIa clinical trial with obese individuals shows no effect of CYT009-GhrQb on weight loss [media release]. 2006 Nov 7 [online]. Available from URL: http://www.cytos.com/doc/Cytos_Press_E_061107.pdf [Accessed 2012 Feb 1]

  152. Broglio F, Gianotti L, Destefanis S, et al. The endocrine response to acute ghrelin administration is blunted in patients with anorexia nervosa, a ghrelin hypersecretory state. Clin Endocrinol (Oxf) 2004; 60(5): 592–9

    Article  CAS  Google Scholar 

  153. Miljic D, Pekic S, Djurovic M, et al. Ghrelin has partial or no effect on appetite, growth hormone, prolactin, and cortisol release in patients with anorexia nervosa. J Clin Endocrinol Metab 2006; 91(4): 1491–5

    Article  PubMed  CAS  Google Scholar 

  154. Hotta M, Ohwada R, Akamizu T, et al. Ghrelin increases hunger and food intake in patients with restricting-type anorexia nervosa: apilot study. Endocr J 2009; 56(9): 1119–28

    Article  PubMed  CAS  Google Scholar 

  155. McAllister CJ, Whittington JE, Holland AJ. Development of the eating behaviour in Prader-Willi Syndrome: advances in our understanding. Int J Obes (Lond) 2011; 35(2): 188–97

    Article  CAS  Google Scholar 

  156. Cummings DE, Clement K, Purnell JQ, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med 2002; 8(7): 643–4

    Article  PubMed  CAS  Google Scholar 

  157. DelParigi A, Tschop M, Heiman ML, et al. High circulating ghrelin: a potential cause for hyperphagia and obesity in Prader-Willi syndrome. J Clin Endocrinol Metab 2002; 87(12): 5461–4

    Article  PubMed  CAS  Google Scholar 

  158. Haqq AM, Farooqi IS, O’Rahilly S, et al. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. J Clin Endocrinol Metab 2003; 88(1): 174–8

    Article  PubMed  CAS  Google Scholar 

  159. Bizzarri C, Rigamonti AE, Giannone G, et al. Maintenance of a normal meal-induced decrease in plasma ghrelin levels in children with Prader-Willi syndrome. Horm Metab Res 2004; 36(3): 164–9

    Article  PubMed  CAS  Google Scholar 

  160. Bizzarri C, Rigamonti AE, Luce A, et al. Children with Prader-Willi syndrome exhibit more evident meal-induced responses in plasma ghrelin and peptide YY levels than obese and lean children. Eur J Endocrinol 2010; 162(3): 499–505

    Article  PubMed  CAS  Google Scholar 

  161. Haqq AM, Stadler DD, Rosenfeld RG, et al. Circulating ghrelin levels are suppressed by meals and octreotide therapy in children with Prader-Willi syndrome. J Clin Endocrinol Metab 2003; 88(8): 3573–6

    Article  PubMed  CAS  Google Scholar 

  162. De Waele K, Ishkanian SL, Bogarin R, et al. Long-acting octreotide treatment causes a sustained decrease in ghrelin concentrations but does not affect weight, behaviour and appetite in subjects with Prader-Willi syndrome. Eur J Endocrinol 2008; 159(4): 381–8

    Article  PubMed  CAS  Google Scholar 

  163. Tan TM, Vanderpump M, Khoo B, et al. Somatostatin infusion lowers plasma ghrelin without reducing appetite in adults with Prader-Willi syndrome. J Clin Endocrinol Metab 2004; 89(8): 4162–5

    Article  PubMed  CAS  Google Scholar 

  164. Chollet C, Meyer K, Beck-Sickinger AG. Ghrelin: a novel generation of anti-obesity drug: design, pharmacomodulation and biological activity of ghrelin analogues. J Pept Sci 2009; 15(11): 711–30

    Article  PubMed  CAS  Google Scholar 

  165. DeBoer MD. Ghrelin and cachexia: will treatment with GHSR-1a agonists make a difference for patients suffering from chronic wasting syndromes? Mol Cell Endocrinol 2011; 340(1): 97–105

    Article  PubMed  CAS  Google Scholar 

  166. Laferrere B, Hart AB, Bowers CY. Obese subjects respond to the stimulatory effect of the ghrelin agonist growth hormone-releasing peptide-2 on food intake. Obesity (Silver Spring) 2006; 14(6): 1056–63

    Article  CAS  Google Scholar 

  167. Esler WP, Rudolph J, Claus TH, et al. Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology 2007; 148(11): 5175–85

    Article  PubMed  CAS  Google Scholar 

  168. Gualillo O, Lago F, Dieguez C. Introducing GOAT: a target for obesity and anti-diabetic drugs? Trends Pharmacol Sci 2008; 29(8): 398–401

    Article  PubMed  CAS  Google Scholar 

  169. Zorrilla EP, Iwasaki S, Moss JA, et al. Vaccination against weight gain. Proc Natl Acad Sci U S A 2006; 103(35): 13226–31

    Article  PubMed  CAS  Google Scholar 

  170. Lu SC, Xu J, Chinookoswong N, et al. An acyl-ghrelinspecific neutralizing antibody inhibits the acute ghrelinmediated orexigenic effects in mice. Mol Pharmacol 2009; 75(4): 901–7

    Article  PubMed  CAS  Google Scholar 

  171. Garner AL, Janda KD. A small molecule antagonist of ghrelin O-acyltransferase (GOAT). Chem Commun (Camb) 2011; 47(26): 7512–4

    Article  CAS  Google Scholar 

  172. Barnett BP, Hwang Y, Taylor MS, et al. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 2010; 330(6011): 1689–92

    Article  PubMed  CAS  Google Scholar 

  173. Kobelt P, Helmling S, Stengel A, et al. Anti-ghrelin Spiegelmer NOX-B11 inhibits neurostimulatory and orexigenic effects of peripheral ghrelin in rats. Gut 2006; 55(6): 788–92

    Article  PubMed  CAS  Google Scholar 

  174. Helmling S, Maasch C, Eulberg D, et al. Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. Proc Natl Acad Sci U S A 2004; 101(36): 13174–9

    Article  PubMed  CAS  Google Scholar 

  175. Shearman LP, Wang SP, Helmling S, et al. Ghrelin neutralization by a ribonucleic acid-SPM ameliorates obesity in diet-induced obese mice. Endocrinology 2006; 147(3): 1517–26

    Article  PubMed  CAS  Google Scholar 

  176. Becskei C, Bilik KU, Klussmann S, et al. The anti-ghrelin Spiegelmer NOX-B11-3 blocks ghrelin- but not fastinginduced neuronal activation in the hypothalamic arcuate nucleus. J Neuroendocrinol 2008; 20(1): 85–92

    PubMed  CAS  Google Scholar 

  177. Perez-Tilve D, Gonzalez-Matias L, Alvarez-Crespo M, et al. Exendin-4 potently decreases ghrelin levels in fasting rats. Diabetes 2007; 56(1): 143–51

    Article  PubMed  CAS  Google Scholar 

  178. Germain N, Galusca B, Grouselle D, et al. Ghrelin/ obestatin ratio in two populations with low bodyweight: constitutional thinness and anorexia nervosa. Psychoneuroendocrinology 2009; 34(3): 413–9

    Article  PubMed  CAS  Google Scholar 

  179. Germain N, Galusca B, Grouselle D, et al. Ghrelin and obestatin circadian levels differentiate bingeing-purging from restrictive anorexia nervosa. J Clin Endocrinol Metab 2010; 95(6): 3057–62

    Article  PubMed  CAS  Google Scholar 

  180. Janas-Kozik M, Krupka-Matuszczyk I, Malinowska-Kolodziej I, et al. Total ghrelin plasma level in patients with the restrictive type of anorexia nervosa. Regul Pept 2007; 140(1-2): 43–6

    Article  PubMed  CAS  Google Scholar 

  181. Monteleone P, Serritella C, Martiadis V, et al. Plasma obestatin, ghrelin, and ghrelin/obestatin ratio are increased in underweight patients with anorexia nervosa but not in symptomatic patients with bulimia nervosa. J Clin Endocrinol Metab 2008; 93(11): 4418–21

    Article  PubMed  CAS  Google Scholar 

  182. Nedvidkova J, Krykorkova I, Bartak V, et al. Loss of mealinduced decrease in plasma ghrelin levels in patients with anorexia nervosa. J Clin Endocrinol Metab 2003; 88(4): 1678–82

    Article  PubMed  CAS  Google Scholar 

  183. Ogiso K, Asakawa A, Amitani H, et al. Ghrelin and anorexia nervosa: a psychosomatic perspective. Nutrition 2011; 27(10): 988–93

    Article  PubMed  CAS  Google Scholar 

  184. Otto B, Cuntz U, Fruehauf E, et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 2001; 145(5): 669–73

    PubMed  CAS  Google Scholar 

  185. Soriano-Guillen L, Barrios V, Campos-Barros A, et al. Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. J Pediatr 2004; 144(1): 36–42

    Article  PubMed  CAS  Google Scholar 

  186. Tanaka M, Naruo T, Yasuhara D, et al. Fasting plasma ghrelin levels in subtypes of anorexia nervosa. Psychoneuroendocrinology 2003; 28(7): 829–35

    Article  PubMed  CAS  Google Scholar 

  187. Tanaka M, Tatebe Y, Nakahara T, et al. Eating pattern and the effect of oral glucose on ghrelin and insulin secretion in patients with anorexia nervosa. Clin Endocrinol 2003; 59(5): 574–9

    Article  CAS  Google Scholar 

  188. Tanaka M, Nakahara T, Kojima S, et al. Effect of nutritional rehabilitation on circulating ghrelin and growth hormone levels in patients with anorexia nervosa. Regul Pept 2004; 122(3): 163–8

    Article  PubMed  CAS  Google Scholar 

  189. Tolle V, Kadem M, Bluet-Pajot MT, et al. Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J Clin Endocrinol Metab 2003; 88(1): 109–16

    Article  PubMed  CAS  Google Scholar 

  190. Otto B, Tschop M, Fruhauf E, et al. Postprandial ghrelin release in anorectic patients before and after weight gain. Psychoneuroendocrinology 2005; 30(6): 577–81

    Article  PubMed  CAS  Google Scholar 

  191. Strober M, Freeman R, Morrell W. The long-term course of severe anorexia nervosa in adolescents: survival analysis of recovery, relapse, and outcome predictors over 10–15 years in a prospective study. Int J Eat Disord 1997; 22(4): 339–60

    Article  PubMed  CAS  Google Scholar 

  192. Solenberger SE. Exercise and eating disorders: a 3-year inpatient hospital record analysis. Eat Behav 2001; 2(2): 151–68

    Article  PubMed  CAS  Google Scholar 

  193. Steinhausen HC, Grigoroiu-Serbanescu M, Boyadjieva S, et al. Course and predictors of rehospitalization in adolescent anorexia nervosa in a multisite study. Int J Eat Disord 2008; 41(1): 29–36

    Article  PubMed  Google Scholar 

  194. Dardennes RM, Zizzari P, Tolle V, et al. Family trios analysis of common polymorphisms in the obestatin/ghrelin, BDNF and AGRP genes in patients with anorexia nervosa: association with subtype, body-mass index, severity and age of onset. Psychoneuroendocrinology 2007; 32(2): 106–13

    Article  PubMed  CAS  Google Scholar 

  195. Otto B, Tschop M, Cuntz U. Letter to the editor: similar fasting ghrelin levels in binge eating/purging anorexia nervosa and restrictive anorexia nervosa[comment]. Psychoneuroendocrinology 2004; 29(5): 692–3

    Article  PubMed  CAS  Google Scholar 

  196. Tanaka M, Naruo T, Nagai N, et al. Habitual binge/purge behavior influences circulating ghrelin levels in eating disorders. J Psychiatr Res 2003; 37(1): 17–22

    Article  PubMed  Google Scholar 

  197. Misra M, Miller KK, Herzog DB, et al. Growth hormone and ghrelin responses to an oral glucose load in adolescent girls with anorexia nervosa and controls. J Clin Endocrinol Metab 2004; 89(4): 1605–12

    Article  PubMed  CAS  Google Scholar 

  198. Nakahara T, Kojima S, Tanaka M, et al. Incomplete restoration of the secretion of ghrelin and PYY compared to insulin after food ingestion following weight gain in anorexia nervosa. J Psychiatr Res 2007; 41(10): 814–20

    Article  PubMed  Google Scholar 

  199. Stock S, Leichner P, Wong AC, et al. Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. J Clin Endocrinol Metab 2005; 90(4): 2161–8

    Article  PubMed  CAS  Google Scholar 

  200. Nakai Y, Hosoda H, Nin K, et al. Short-term secretory regulation of the active form of ghrelin and total ghrelin during an oral glucose tolerance test in patients with anorexia nervosa [erratum appears in Eur J Endocrinol 2005 Jan; 152 (1): 163]. Eur J Endocrinol 2004; 150(6): 913–4

    Article  PubMed  CAS  Google Scholar 

  201. Bello NT, Coughlin JW, Redgrave GW, et al. Oral sensory and cephalic hormonal responses to fat and non-fat liquids in bulimia nervosa. Physiol Behav 2010; 99(5): 611–7

    Article  PubMed  CAS  Google Scholar 

  202. Tanaka M, Naruo T, Muranaga T, et al. Increased fasting plasma ghrelin levels in patients with bulimia nervosa. Eur J Endocrinol 2002; 146(6): R1–3

    Article  PubMed  CAS  Google Scholar 

  203. Nakazato M, Hashimoto K, Shiina A, et al. No changes in serum ghrelin levels in female patients with bulimia nervosa. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28(7): 1181–4

    Article  PubMed  CAS  Google Scholar 

  204. Troisi A, Di Lorenzo G, Lega I, et al. Plasma ghrelin in anorexia, bulimia, and binge-eating disorder: relations with eating patterns and circulating concentrations of cortisol and thyroid hormones. Neuroendocrinology 2005; 81(4): 259–66

    Article  PubMed  CAS  Google Scholar 

  205. Monteleone P, Martiadis V, Fabrazzo M, et al. Ghrelin and leptin responses to food ingestion in bulimia nervosa: implications for binge-eating and compensatory behaviours. Psychol Med 2003; 33(8): 1387–94

    Article  PubMed  CAS  Google Scholar 

  206. Sedlackova D, Kopeckova J, Papezova H, et al. Changes of plasma obestatin, ghrelin and NPY in anorexia and bulimia nervosa patients before and after a high-carbohydrate breakfast. Physiol Res 2011; 60(1): 165–73

    PubMed  CAS  Google Scholar 

  207. Kojima S, Nakahara T, Nagai N, et al. Altered ghrelin and peptide YY responses to meals in bulimia nervosa. Clin Endocrinol 2005; 62(1): 74–8

    Article  CAS  Google Scholar 

  208. Monteleone P, Serritella C, Scognamiglio P, et al. Enhanced ghrelin secretion in the cephalic phase of food ingestion in women with bulimia nervosa. Psychoneuroendocrinology 2010; 35(2): 284–8

    Article  PubMed  CAS  Google Scholar 

  209. Striegel-Moore RH, Franko DL. Should binge eating disorder be included in the DSM-V? A critical review of the state of the evidence. Annu Rev Clin Psychol 2008; 4: 305–24

    Article  PubMed  Google Scholar 

  210. Monteleone P, Tortorella A, Castaldo E, et al. The Leu72-Met polymorphism of the ghrelin gene is significantly associated with binge eating disorder. Psychiatr Genet 2007; 17(1): 13–6

    Article  PubMed  Google Scholar 

  211. Striegel-Moore RH, Franko DL, Garcia J. The validity and clinical utility of night eating syndrome. Int J Eat Disord 2009; 42(8): 720–38

    Article  PubMed  Google Scholar 

  212. Allison KC, Ahima RS, O’Reardon JP, et al. Neuroendocrine profiles associated with energy intake, sleep, and stress in the night eating syndrome. J Clin Endocrinol Metab 2005; 90(11): 6214–7

    Article  PubMed  CAS  Google Scholar 

  213. Goel N, Stunkard AJ, Rogers NL, et al. Circadian rhythm profiles in women with night eating syndrome. J Biol Rhythms 2009; 24(1): 85–94

    Article  PubMed  CAS  Google Scholar 

  214. Rosenhagen MC, Uhr M, Schussler P, et al. Elevated plasma ghrelin levels in night-eating syndrome [letter]. Am J Psychiatry 2005; 162(4): 813

    Article  PubMed  Google Scholar 

  215. Cantonal Hospital of St. Gallen. Individual dose-escalated bi-daily subcutaneously (sc) ghrelin in cancer cachexia: a phase I/II study [ClinicalTrials.gov identifier NCT00933361]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Sep 3]

  216. Göteborg University. Ghrelin: a possible opportunity to improve appetite [ClinicalTrials.gov identifier NCT00681486]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Sep 3]

  217. Helsinn Therapeutics (U.S.), Inc. Safety and efficacy of RC-1291 HCl in patients with cancer related anorexia and weight loss [ClinicalTrials.gov identifier NCT00219817]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Sep 3]

  218. Helsinn Therapeutics (U.S.), Inc. Placebo controlled, randomized safety and efficacy study of RC-1291 in cancer anorexia/cachexia [ClinicalTrials.gov identifier NCT00267358]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Sep 3]

  219. University of Virginia. Growth hormone secretagogue MK-0677’s effect on lean body mass in chronic kidney disease stage 4/5 subjects [ClinicalTrials.gov identifier NCT01343641]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Sep 3]

  220. Angelidis G, Valotassiou V, Georgoulias P. Current and potential roles of ghrelin in clinical practice. J Endocrinol Invest 2010; 33(11): 823–38

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work leading to this review has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013 Neurofast under grant agreement no. 245009).

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. H. Adan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cano, S.C., Merkestein, M., Skibicka, K.P. et al. Role of Ghrelin in the Pathophysiology of Eating Disorders. CNS Drugs 26, 281–296 (2012). https://doi.org/10.2165/11599890-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11599890-000000000-00000

Keywords

Navigation