Skip to main content
Log in

An Experimental Model for the Study of Lymphedema and its Response to Therapeutic Lymphangiogenesis

  • Original Research Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Background

Evaluation of the efficacy of molecular treatment strategies for lymphatic vascular insufficiency requires a suitable preclinical animal model. Ideally, the model should closely replicate the untreated human disease in its pathogenesis and pathological expression.

Objective

We have undertaken a study of the time course of the development and resolution of acquired, experimental lymphedema and of its responses to vascular endothelial growth factor (VEGF)-C lymphangiogenesis in the mouse tail model.

Study design

We provoked post-surgical lymphedema in the mouse tail model and assessed the effects of exogenously administered human recombinant VEGF-C. Quantitative assessment of immune traffic function was performed through sequential in vivo bioluminescent imaging.

Results

In untreated lymphedema, tail edema was sustained until day 21. Exogenous administration of human recombinant VEGF-C produced a significant decrease in volume. Untreated lymphedema in the mouse tail model was characterized by the presence of dilated cutaneous lymphatics, marked acute inflammatory changes, and hypercellularity; VEGF-C produced a substantial reversion to the normal pattern, with notable regression in the size and number of cutaneous lymphatic vessels that express lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1). In vivo imaging confirmed the presence of an impairment of immune traffic in lymphedema that was ameliorated after VEGF-C administration.

Conclusion

The post-surgical murine tail model of lymphedema closely simulates attributes of human lymphedema and provides the requisite sensitivity to detect therapeutically induced functional and structural alterations. It can, therefore, be used as an investigative platform to assess mechanisms of disease and its responses to candidate therapies, such as therapeutic lymphangiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiol Rev 1990; 70(4): 987–1028

    PubMed  CAS  Google Scholar 

  2. Swartz MA. The physiology of the lymphatic system. Adv Drag Deliv Rev 2001; 50(1–2): 3–20

    Article  CAS  Google Scholar 

  3. Szuba A, Rockson SG. Lymphedema: classification, diagnosis and therapy. Vasc Med 1998; 3(2): 145–56

    PubMed  CAS  Google Scholar 

  4. Rockson SG. Lymphedema. Am J Med 2001; 110(4): 288–95

    Article  PubMed  CAS  Google Scholar 

  5. Piller NB. Macrophage and tissue changes in the developmental phases of secondary lymphoedema and during conservative therapy with benzopyrone. Arch Histol Cytol 1990; 53: 209–18

    Article  PubMed  Google Scholar 

  6. Daroczy J. Pathology of lymphedema. Clin Dermatol 1995; 13(5): 433–44

    Article  PubMed  CAS  Google Scholar 

  7. Rockson SG, Miller LT, Senie R, et al. American Cancer Society Lymphedema Workshop: workgroup III. Diagnosis and management of lymphedema. Cancer 1998; 83(12 Suppl. American): 2882–5

    Article  PubMed  CAS  Google Scholar 

  8. Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 1999; 5: 1359–64

    Article  PubMed  CAS  Google Scholar 

  9. Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 2002; 1(3): 219–27

    Article  PubMed  CAS  Google Scholar 

  10. An A, Rockson SG. The potential for molecular treatment strategies in lymphatic disease. Lymphat Res Biol 2004; 2(4): 173–81

    Article  PubMed  CAS  Google Scholar 

  11. Szuba A, Skobe M, Karkkainen MJ, et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J 2002; 16(14): 1985–7

    PubMed  CAS  Google Scholar 

  12. Yoon YS, Murayama T, Gravereaux E, et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest 2003; 111(5): 717–25

    PubMed  CAS  Google Scholar 

  13. Swartz MA, Berk DA, Jain RK. Transport in lymphatic capillaries: I. Macroscopic measurements using residence time distribution theory. Am J Physiol 1996; 270 (1 Pt 2): H324–9

    PubMed  CAS  Google Scholar 

  14. Swartz MA, Boardman Jr KC. The role of interstitial stress in lymphatic function and lymphangiogenesis. Ann N Y Acad Sci 2002; 979: 197–210, discussion 134

    Article  PubMed  Google Scholar 

  15. Slavin SA, Van den Abbeele AD, Losken A, et al. return of lymphatic function after flap transfer for acute lymphedema. Ann Surg 1999; 229 (3): 421-7

    Google Scholar 

  16. Boardman KC, Swartz MA. Interstitial flow as a guide for lymphangiogenesis. Circ Res 2003; 92(7): 801–8

    Article  PubMed  CAS  Google Scholar 

  17. Swartz MA, Kaipainen A, Netti PA, et al. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J Biomech 1999; 32(12): 1297–307

    Article  PubMed  CAS  Google Scholar 

  18. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276(5317): 1423–5

    Article  PubMed  CAS  Google Scholar 

  19. Casley-Smith JR, Clodius L, Foldi M. Experimental blood vascular and lymphatic occlusion in the rabbit ear and the effect of benzopyrones. Arzneimittelforschung 1977; 27(2): 379–82

    PubMed  CAS  Google Scholar 

  20. Slavin SA, Upton J, Kaplan WD, et al. An investigation of lymphatic function following free-tissue transfer. Plast Reconstr Surg 1997; 99(3): 730–41, discussion 742-3

    Article  PubMed  CAS  Google Scholar 

  21. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 290–8

    PubMed  CAS  Google Scholar 

  22. Sitzia J. Volume measurement in lymphoedema treatment: examination of formulae. Eur J Cancer Care (Engl) 1995; 4(1): 11–6

    Article  CAS  Google Scholar 

  23. Cao YA, Wagers AJ, Beilhack A, et al. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci U S A 2004; 101(1): 221–6

    Article  PubMed  CAS  Google Scholar 

  24. Beilhack A, Schulz S, Baker J, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T cell subsets. Blood 2005 Aug 1; 106(3): 1113–22

    Article  PubMed  CAS  Google Scholar 

  25. Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999; 144(4): 789–801

    Article  PubMed  CAS  Google Scholar 

  26. Jackson DG. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. Apmis 2004; 112(7–8): 526–38

    Article  PubMed  CAS  Google Scholar 

  27. Yong C, Bridenbaugh EA, Zawieja DC, et al. Microarray analysis of VEGF-C responsive genes in human lymphatic endothelial cells. Lymphat Res Biol 2005; 3(4): 183–207

    Article  PubMed  CAS  Google Scholar 

  28. Hong YK, Shin JW, Detmar M. Development of the lymphatic vascular system: a mystery unravels. Dev Dyn 2004; 231(3): 462–73

    Article  PubMed  CAS  Google Scholar 

  29. Tammela T, Enholm B, Alitalo K, et al. The biology of vascular endothelial growth factors. Cardiovasc Res 2005; 65(3): 550–63

    Article  PubMed  CAS  Google Scholar 

  30. Shin WS, Szuba A, Rockson SG. Animal models for the study of lymphatic insufficiency. Lymphat Res Biol 2003; 1(2): 159–69

    Article  PubMed  Google Scholar 

  31. Enholm B, Karpanen T, Jeltsch M, et al. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res 2001; 88(6): 623–9

    Article  PubMed  CAS  Google Scholar 

  32. Saaristo A, Veikkola T, Enholm B, et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. Faseb J 2002; 16(9): 1041–9

    Article  PubMed  CAS  Google Scholar 

  33. Goldman J, Le TX, Skobe M, et al. Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circ Res 2005; 96(11): 1193–9

    Article  PubMed  CAS  Google Scholar 

  34. Wilson SF. Histopathologic improvement with lymphedema management, Leogane, Haiti. Emerg Infect Dis 2004; 10(11): 1938–46

    Article  PubMed  Google Scholar 

  35. Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001; 7(2): 199–205

    Article  PubMed  CAS  Google Scholar 

  36. Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A 2001; 98(22): 12677–82

    Article  PubMed  CAS  Google Scholar 

  37. Schneider M, Ny A, de Almodovar CR, et al. A new mouse model to study acquired lymphedema. PLoS Med 2006; 3(7): e264

    Article  PubMed  Google Scholar 

  38. Tabibiazar R, Cheung L, Han J, et al. Inflammatory manifestations of experimental lymphatic insufficiency. PLoS Med 2006; 3(7): e254

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge grant support from the Western States Affiliate of the American Heart Association (grant no. 0355120Y).

The sponsor had no role in the design of the study, performance of the research, or writing of the manuscript.

The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley G. Rockson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, L., Han, J., Beilhack, A. et al. An Experimental Model for the Study of Lymphedema and its Response to Therapeutic Lymphangiogenesis. BioDrugs 20, 363–370 (2006). https://doi.org/10.2165/00063030-200620060-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200620060-00007

Keywords

Navigation