Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Evolution of Class A G-Protein-Coupled Receptors: Implications for Molecular Modeling

Author(s): M. Chabbert, H. Castel, J. Pele, J. Deville, R. Legendre and P. Rodien

Volume 19, Issue 8, 2012

Page: [1110 - 1118] Pages: 9

DOI: 10.2174/092986712799320600

Price: $65

Abstract

Class A or rhodopsin-like G-protein-coupled receptors (GPCRs) constitute the largest transmembrane receptor family of the human genome. Because of their biological and pharmaceutical importance, the evolutionary history of these receptors has been widely studied. Most studies agree on the classification of the 700 members of this family into a dozen of sub-families. However, the relationship between these sub-families remains controversial and the molecular processes that drove the evolution and diversification of such a large family have still to be determined. We review here the evolutionary analyses carried out on class A GPCRs either by phylogenetic methods or by multidimensional scaling (MDS). We detail the key molecular events driving the evolution of this receptor family. We analyze these events in view of the recently resolved crystal structures of GPCRs and we discuss the usefulness of evolutionary information to help molecular modeling.

Keywords: Evolution, Phylogeny, Molecular modeling, G-protein-coupled receptor, Class A GPCR, cAMP receptors, Transmembrane, Transmembrane receptor, receptor, Protein family, Multidimensional scaling, Sequence analysis


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy