RESEARCH ARTICLE


Effect of a Type II Collagen Fragment on the Expression of Genes of the Extracellular Matrix in Cells of the Intervertebral Disc



F Mwale*, H.T Wang, D.J Zukor, O.L Huk, A Petit, J Antoniou
Division of Orthopaedic Surgery, McGill University, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, 3755, Chemin de la Cote Ste-Catherine, Montreal, QC H3T 1E2, Canada


Article Metrics

CrossRef Citations:
10
Total Statistics:

Full-Text HTML Views: 671
Abstract HTML Views: 362
PDF Downloads: 201
Total Views/Downloads: 1234
Unique Statistics:

Full-Text HTML Views: 451
Abstract HTML Views: 250
PDF Downloads: 150
Total Views/Downloads: 851



Creative Commons License
2008 Bentham Science Publishers Ltd.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

* Address correspondence to this author at the Division of Orthopaedic Surgery, McGill University, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, 3755, Chemin de la Cote Ste-Catherine, Montreal, QC H3T 1E2, Canada; E-mail: fmwale@ldi.jgh.mcgill.ca and facksonmwale@yahoo.ca


Abstract

Knowledge of factors regulating the turnover, repair, and degeneration of the intervertebral disc (IVD) is lacking. Although type II collagen (CII) fragments accumulate in the degenerative IVD, little is known of how they affect the degenerative process. A better understanding of the cellular interactions with fragments of matrix molecules are a key factor in promoting therapies for degenerative disc diseases. In the present study, we have investigated the effect of the CII (245-270) peptide on the expression of matrix molecules, proteinases, and interleukin genes in cells of the IVD. Cells isolated from the nucleus pulposus (NP) and annulus fibrosus (AF) of adult bovine tails were cultured up to 8 days in the absence (control) or presence of the CII (245-270) peptide. RT-PCR was used to analyze the expression of the different genes. Exposure of these cells to the CII (245-270) peptide led to a transient up-regulation of the aggrecan gene in AF cells while this up-regulation was maintained for a longer time in NP cells. The fragment also enhanced a transient up-regulation of the type II collagen gene in AF cells but had no effect in NP cells. The peptide enhanced transiently the expression of matrix metalloproteinase (MMP)-1 and cathepsin K genes in both AF and NP cells whereas it increased MMP-13 expression only in NP cells. The peptide up-regulated tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, and TIMP-3 gene expression on day 1 in AF cells but had very little effect on their expression in NP cells. Finally, the CII (245-270) peptide had no effect on IL-6 expression while IL-1α was not expressed in these cells. In conclusion, our results showed that the CII (245-270) peptide differentially alter the expression of genes in bovine AF and NP cells and suggest that degradation products of collagen may be involved in the regulation of IVD homeostasis.