Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 1, 2007

Halophilic bacteria are able to decontaminate dichlorvos, a pesticide, from saline environments

  • Tatiana Oncescu EMAIL logo , Petruta Oancea , Madalin Enache , Gabriela Popescu , Lucia Dumitru and Masahiro Kamekura
From the journal Open Life Sciences

Abstract

Dichlorvos (DDVP) is an organophosphorous pesticide with a high degree of dangerous effect towards the environment. We have investigated the growth and susceptibility to DDVP of halophilic bacteria isolated from Romanian salt lakes. The growth of four strains was affected by DDVP, which may be correlated with the rate constant values of DDVP disappearance from the saline solutions. This is due not to a chemical degradation in solution but to the diffusion process and namely DDVP penetration into the cell cytoplasm by an “organic-osmolyte” mechanism. The permeability coefficient P was calculated.

[1] Merck Index, (1976), 9th Ed. Search in Google Scholar

[2] W. Wild: “Mutagenicity studies on organophosphorus insecticides”, Mutat. Res., Vol. 32, (1975), pp. 133–150. Search in Google Scholar

[3] E. Evghenidou, K. Fytianos and I. Poulios: “Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalyst”, Appl. Catal. B: Environ., Vol. 30, (2005), pp. 259–269. Search in Google Scholar

[4] T. Oncescu and P. Oancea: “On The Photolysis of Dichlorvos”, Rev. Roum. Chim., Vol. 50, (2005), pp. 999–1007. Search in Google Scholar

[5] J. Leveglia and P.A. Dahm: “Degradation of organophosphorus and carbamate insecticides in the soil and by soil microorganisms”, Annu. Rev. Entomol., Vol. 22, (1977), pp. 483–515. http://dx.doi.org/10.1146/annurev.en.22.010177.00241110.1146/annurev.en.22.010177.002411Search in Google Scholar

[6] EPA-US: “Phase I Comments for dichlorvos”, (1999), pp. 1–62. Search in Google Scholar

[7] H. Tse, M. Comba and M. Alaee: “Methods for the determination of organophosphate insecticides in water, sediments and biota”, Chemosphere, Vol. 54, (2004) pp. 41–47. http://dx.doi.org/10.1016/S0045-6535(03)00659-310.1016/S0045-6535(03)00659-3Search in Google Scholar

[8] M.T. Lieberman and M. Alexander: “Microbial and nonenzymatic steps in the degradation of dichlorvos (2,2-dichlorovinyl,O,O-dimethyl phosphate)”, J. Agric. Food Chem., Vol. 31, (1983), pp. 265–267. http://dx.doi.org/10.1021/jf00116a01910.1021/jf00116a019Search in Google Scholar

[9] W.J. Hayes: Pesticides Studied in Man, Williams and Wilkins, Baltimore, MD., 1982. Search in Google Scholar

[10] W.J. Hayes and E.R. Laws (Eds.): “Classes of Pesticides”, Handbook of Pesticide Toxicology, Academic Press, Inc., NY, 1990. Search in Google Scholar

[11] IPCS-INCHEM, http://www.inchem.org/documents/jmpr/jmpmono/v93pr05.htm Search in Google Scholar

[12] J.J. DeFrank and T. Cheng: “Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate”, J. Bacteriol., Vol. 173, (1991), pp. 1938–1943. Search in Google Scholar

[13] F. Streichsbier and C. Hinteregger: “Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water”, Biotechnol. Lett., Vol. 19, (1997), pp. 1099–1102. http://dx.doi.org/10.1023/A:101848841010210.1023/A:1018488410102Search in Google Scholar

[14] B.M. Peyton, M.R. Mormile, V. Alva, C. Oie, F. Roberto, W.A. Apel and A. Oren: “Biotransformation of toxic organic and inorganic contaminants by halophilic bacteria”, Halophilic Microorganisms, A. Ventosa (Ed.), Springer-Verlag Berlin Heidelberg, 2004, pp. 315–331. 10.1007/978-3-662-07656-9_23Search in Google Scholar

[15] V.A. Hayes, N.G. Ternan and G. McMullan: “Organophosphonate metabolism by a moderately halophilic bacterial isolate”, FEMS Microbiol. Lett., Vol. 186, (2000), pp. 171–175. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09099.x10.1111/j.1574-6968.2000.tb09099.xSearch in Google Scholar

[16] A. Oren, P. Gurevich, M. Azachi and Y. Henis: “Microbial degradation of pollutants at high salt concentration”, Biodegradation, Vol. 3, (1992), pp. 387–389. http://dx.doi.org/10.1007/BF0012909510.1007/BF00129095Search in Google Scholar

[17] H.J. Kunte, H.G. Trüper and H. Stan-Lotter: “Halophilic microorganisms”, Astrobiology: the quest for the conditions of life, G. Horneck, C. Baumstark-Khan (Eds.), Springer, New York-Berlin, 2002, pp. 185–200. 10.1007/978-3-642-59381-9_13Search in Google Scholar

[18] H.J. Kunte: “Osmoregulation in Bacteria: Compatible Solute Accumulation and Osmosensing”, Environ. Chem., Vol. 3, (2006), pp. 94–99. http://dx.doi.org/10.1071/EN0601610.1071/EN06016Search in Google Scholar

[19] S. Cayley, B.A. Lewis, H.J. Guttman and M.T.Jr. Record: “Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo, J. Mol. Biol., Vol. 222, (1991), pp. 281–300. http://dx.doi.org/10.1016/0022-2836(91)90212-O10.1016/0022-2836(91)90212-OSearch in Google Scholar

[20] A. Ventosa, J.J. Nieto and A. Oren: “Biology of moderately halophilic aerobic bacteria”, Microbiol. Mol. Biol. Rev., Vol. 62, (1998), pp. 504–544. Search in Google Scholar

[21] A. Oren: “Bioenergetics aspects of halophilism”, Microbiol. Mol. Biol. Rev., Vol. 63, (1999), pp. 334–348. Search in Google Scholar

[22] D.J. Kushner and M. Kamekura: “Physiology of halophilic Eubacteria”, Halophilic Bacteria, F. Rodriguez-Valera (Ed.), Vol. I, 1988, pp. 109–138. Search in Google Scholar

[23] W.D. Grant, R.T. Gemmell and T.J. McGenity: “Halobacteria: the evidence for longevity”, Extremophiles, Vol. 2, (1998), pp. 279–287. http://dx.doi.org/10.1007/s00792005007010.1007/s007920050070Search in Google Scholar

[24] A. Carere, V.A. Ortali, G. Cardamone and G. Morpurgo: “Mutagenicity of dichlorvos and other structurally related pesticides in Salmonella and Streptomyces”, Chem. Biol. Interact., Vol. 22, (1978), pp. 297–308. http://dx.doi.org/10.1016/0009-2797(78)90134-510.1016/0009-2797(78)90134-5Search in Google Scholar

[25] M. Iranzo, J. Sain-Pardo, R. Boluda, J. Sanchez and S. Mormeneo: “The use of microorganisms in environmental remediation”, Ann. Microbiol., Vol. 51, (2001), pp. 135–143. Search in Google Scholar

[26] K.B. Singh and A. Walker: “Microbial degradation of organophosphorus compounds”, FEMS Microbiol. Rev., Vol. 30, (2006), pp. 428–471. http://dx.doi.org/10.1111/j.1574-6976.2006.00018.x10.1111/j.1574-6976.2006.00018.xSearch in Google Scholar

[27] M. Enache, T. Itoh, M. Kamekura, G. Teodosiu and L. Dumitru: “Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake”, Int. J. Syst. Evol. Microbiol., Vol. 57, (2007), pp. 393–397. http://dx.doi.org/10.1099/ijs.0.64674-010.1099/ijs.0.64674-0Search in Google Scholar

[28] A. Asthana, A. Pillai and V.K. Gupta: “A simple sensitive spectophotometric method for determination of dichlorvos in environmental samples”, Indian J. Environ. Prot., Vol. 21, (2001), pp. 856–858. Search in Google Scholar

[29] V. Feigenbrugel, C. Loew, S. Le Calvé and P. Mirabel: “Near-UV molar absorptivities of acetone, alachlor, metolachlor, diazinon and dichlorvos in aqueous solution”, J. Photochem. Photobiol. A: Chemistry, Vol. 174, (2005), pp. 76–81. http://dx.doi.org/10.1016/j.jphotochem.2005.03.01410.1016/j.jphotochem.2005.03.014Search in Google Scholar

[30] M.C. Lu, G.D. Roam, J.N. Chen and C. P. Huang: “Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass”, J. Photochem. Photobiol. A: Chemistry, Vol. 76, (1993), pp. 103–110. http://dx.doi.org/10.1016/1010-6030(93)80180-H10.1016/1010-6030(93)80180-HSearch in Google Scholar

[31] J. Anton, A. Oren, S. Benlloch, F. Rodriguez-Valera and R. Rossello-Mora: “Salinibacter ruber gen. nov., a novel extremely halophilic member of the Bacteria from saltern crystallizer ponds”, Int. J. Syst. Evol. Microbiol., Vol. 52, (2002), pp. 485–491. Search in Google Scholar

[32] B. Kim, K. La Flamme and N.A. Peppas: “Dynamic Swelling Behavior of pHSensitive Anionic Hydrogels Used for Protein Delivery”, J. Appl. Polymer Sci., Vol. 89, (2003), pp. 1606–1613. http://dx.doi.org/10.1002/app.1233710.1002/app.12337Search in Google Scholar

[33] N.A. Peppas, R. Gurny, E. Doelker and P. Buri: “Modelling of drug diffusion through swellable polymeric systems”, J. Membr. Sci., Vol. 7, (1980), pp. 241–253. http://dx.doi.org/10.1016/S0376-7388(00)80471-810.1016/S0376-7388(00)80471-8Search in Google Scholar

[34] N.A. Peppas: “Release of bioactive agents from swellable polymers: Theory and Experiments”, Recent Advances in Drug Delivery Systems, Anderson, J.M. and Kim, S.W. (Ed.), Plenum Press, N.Y., 1984. pp. 279–290. 10.1007/978-1-4613-2745-5_19Search in Google Scholar

[35] N.A. Peppas and R. Langer: “New challenges in biomaterials”, Science, Vol. 263, (1994), pp. 1715–1720. http://dx.doi.org/10.1126/science.813483510.1126/science.8134835Search in Google Scholar PubMed

[36] L. Ochoa, M. Igartua, R.M. Hernandez, A.R. Gascon and J.L. Pedraz: “Preparation of sustained release hydrophilic matrices by melt granulation in a high-shear mixer”, J. Pharm. Sci., Vol. 8, (2005), pp. 132–140. Search in Google Scholar

[37] S.H. Gehrke, J.P. Fisher, M. Palasis and M.E. Lund: “Factors determining hydrogel permeability”, Annal. N. Y. Acad. Sci., Vol. 831, (1997), pp. 179–207. http://dx.doi.org/10.1111/j.1749-6632.1997.tb52194.x10.1111/j.1749-6632.1997.tb52194.xSearch in Google Scholar PubMed

[38] G.L. Flynn, S.H. Yalkowsky and T.J. Roseman: “Mass transport phenomena and models: theoretical concepts”, J. Pharm. Sci., Vol. 63, (1974), pp. 479–510. http://dx.doi.org/10.1002/jps.260063040310.1002/jps.2600630403Search in Google Scholar PubMed

Published Online: 2007-12-1
Published in Print: 2007-12-1

© 2007 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-007-0037-7/html
Scroll to top button