Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 1, 2006

In-silico prediction and observations of nuclear matrix attachment

  • Adrian Platts EMAIL logo , Amelia Quayle and Stephen Krawetz

Abstract

The nuclear matrix is a functionally adaptive structural framework interior to the nuclear envelope. The nature and function of this nuclear organizer remains the subject of widespread discussion in the epigenetic literature. To draw this discussion together with a view to suggest a way forward we summarize the biochemical evidence for the modalities of DNA-matrix binding alongside the in-silico predictions. Concordance is exhibited at various, but not all levels. On the one hand, both the reiteration and sequence similarity of some elements of Matrix Attachment Regions suggest conservation. On the other hand, in-silico predictions suggest additional unique components. In bringing together biological and sequence evidence we conclude that binding may be hierarchical in nature, reflective of a biological role in replicating, transcribing and potentiating chromatin. Nuclear matrix binding may well be more complex than the widely accepted simple loop model.

[1] Boulikas, T. Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J. Cell. Biochem. 52 (1993) 14–22. http://dx.doi.org/10.1002/jcb.24052010410.1002/jcb.240520104Search in Google Scholar

[2] Fawcett, D.W. On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am. J. Anat. 119 (1966) 129–145. http://dx.doi.org/10.1002/aja.100119010810.1002/aja.1001190108Search in Google Scholar

[3] He, D., Zeng, C. and Brinkley, B.R. Nuclear matrix proteins as structural and functional components of the mitotic apparatus. Int. Rev. Cytol. 162B (1995) 1–74. 10.1016/S0074-7696(08)62614-5Search in Google Scholar

[4] Stadler, S., Schnapp, V., Mayer, R., Stein, S., Cremer, C., Bonifer, C., Cremer, T and Dietzel, S. The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol. 5 (2004) 44. http://dx.doi.org/10.1186/1471-2121-5-4410.1186/1471-2121-5-44Search in Google Scholar

[5] Cremer, T. and Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2 (2001) 292–301. http://dx.doi.org/10.1038/3506607510.1038/35066075Search in Google Scholar

[6] Gotzmann, J. and Foisner, R. Lamins and lamin-binding proteins in functional chromatin organization. Crit. Rev. Eukaryot. Gene Expr. 9 (1999) 257–265. 10.1615/CritRevEukarGeneExpr.v9.i3-4.100Search in Google Scholar

[7] Mika, S. NMP-db Available from: http://cubic.bioc.columbia.edu/db/nmpdb/. Search in Google Scholar

[8] Capco, D.G., Wan, K.M and Penman, S. The nuclear matrix: three-dimensional architecture and protein composition. Cell 29 (1982) 847–858. http://dx.doi.org/10.1016/0092-8674(82)90446-910.1016/0092-8674(82)90446-9Search in Google Scholar

[9] Renz, A. and Fackelmayer, F.O. Purification and molecular cloning of the scaffold attachment factor B (SAF-B), a novel human nuclear protein that specifically binds to S/MAR-DNA. Nucleic Acids Res. 24 (1996) 843–849. http://dx.doi.org/10.1093/nar/24.5.84310.1093/nar/24.5.843Search in Google Scholar

[10] Kas, E. and Laemmli, U.K. In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. Embo. J. 11 (1992) 705–716. Search in Google Scholar

[11] Dickinson, L.A., Joh, T., Kohwi, Y. and Kohwi-Shigematsu, T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70 (1992) 631–645. http://dx.doi.org/10.1016/0092-8674(92)90432-C10.1016/0092-8674(92)90432-CSearch in Google Scholar

[12] Zong, R.T. and Scheuermann, R.H. Mutually exclusive interaction of a novel matrix attachment region binding protein and the NF-muNR enhancer repressor. Implications for regulation of immunoglobulin heavy chain expression. J. Biol. Chem. 270 (1995) 24010–24018. http://dx.doi.org/10.1074/jbc.270.43.2531310.1074/jbc.270.43.25313Search in Google Scholar PubMed

[13] Yusufzai, T.M. and Felsenfeld, G. The 5′-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 8620–8624. http://dx.doi.org/10.1073/pnas.040293810110.1073/pnas.0402938101Search in Google Scholar

[14] Steinert, P.M. and Roop, D.R. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57 (1988) 593–625. http://dx.doi.org/10.1146/annurev.bi.57.070188.00311310.1146/annurev.bi.57.070188.003113Search in Google Scholar

[15] Rando, O.J., Zhao, K and Crabtree, G.R. Searching for a function for nuclear actin. Trends Cell Biol. 10 (2000) 92–97. http://dx.doi.org/10.1016/S0962-8924(99)01713-410.1016/S0962-8924(99)01713-4Search in Google Scholar

[16] He, D.C., Nickerson, J.A and Penman, S. Core filaments of the nuclear matrix. J. Cell Biol. 110 (1990) 569–580. http://dx.doi.org/10.1083/jcb.110.3.56910.1083/jcb.110.3.569Search in Google Scholar

[17] Narayan, K.S., Steele, W.J., Smetana, K and Busch, H. Ultrastructural aspects of the ribonucleo-protein network in nuclei of Walker tumor and rat liver. Exp. Cell Res. 46 (1967) 65–77. http://dx.doi.org/10.1016/0014-4827(67)90409-010.1016/0014-4827(67)90409-0Search in Google Scholar

[18] Ma, H., Siegel, A.J and Berezney, R. Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J. Cell Biol. 146 (1999) 531–542. http://dx.doi.org/10.1083/jcb.146.3.53110.1083/jcb.146.3.531Search in Google Scholar PubMed PubMed Central

[19] Miralles, F., Ofverstedt, L.G., Sabri, N., Aissouni, Y., Hellman, U., Skoglund, U and Visa, N. Electron tomography reveals posttranscriptional binding of pre-mRNPs to specific fibers in the nucleoplasm. J. Cell Biol. 148 (2000) 271–282. http://dx.doi.org/10.1083/jcb.148.2.27110.1083/jcb.148.2.271Search in Google Scholar PubMed PubMed Central

[20] Jackson, D.A. and Cook, P.R. Visualization of a filamentous nucleoskeleton with a 23 nm axial repeat. EMBO. J. 7 (1988) 3667–3677. Search in Google Scholar

[21] Earnshaw, W.C. and Heck, M.M. Localization of topoisomerase II in mitotic chromosomes. J. Cell Biol. 100 (1985) 1716–1725. http://dx.doi.org/10.1083/jcb.100.5.171610.1083/jcb.100.5.1716Search in Google Scholar PubMed PubMed Central

[22] Glazkov, M.V., Poltaraus, A.B. and Lebedeva, I.A. Nucleotide sequence of DNA isolated from protein cores of rosette-like structures (elementary chromomeres) of mouse interphase chromosomes. Genetika 30 (1994) 1146–1154. Search in Google Scholar

[23] Prusov, A.N., Poliakov, V., Zatsepina, O.V., Fais, D. and Chentsov Iu, S. Isolation of rosette-like structures from partially deproteinized chromatin in rat hepatocytes. Tsitologiia 27 (1985) 1026–1030. Search in Google Scholar

[24] van Driel, R. and Fransz, P. Nuclear architecture and genome functioning in plants and animals: what can we learn from both? Exp. Cell Res. 296 (2004) 86–90. http://dx.doi.org/10.1016/j.yexcr.2004.03.00910.1016/j.yexcr.2004.03.009Search in Google Scholar PubMed

[25] Ierardi, L.A., Moss, S.B. and Bellve, A.R. Synaptonemal complexes are integral components of the isolated mouse spermatocyte nuclear matrix. J. Cell Biol. 96 (1983) 1717–1726. http://dx.doi.org/10.1083/jcb.96.6.171710.1083/jcb.96.6.1717Search in Google Scholar PubMed PubMed Central

[26] Gautier, T., Robert-Nicoud, M., Guilly, M.N. and Hernandez-Verdun, D. Relocation of nucleolar proteins around chromosomes at mitosis. A study by confocal laser scanning microscopy. J. Cell Sci. 102 (Pt 4) (1992) 729–737. 10.1242/jcs.102.4.729Search in Google Scholar

[27] Hernandez-Verdun, D. and Gautier, T. The chromosome periphery during mitosis. Bioessays 16 (1994) 179–185. http://dx.doi.org/10.1002/bies.95016030810.1002/bies.950160308Search in Google Scholar

[28] Berezney, R., Mortillaro, M.J., Ma, H., Wei, X. and Samarabandu, J. The nuclear matrix: a structural milieu for genomic function. Int. Rev. Cytol. 162A (1995) 1–65. http://dx.doi.org/10.1016/S0074-7696(08)61228-010.1016/S0074-7696(08)61228-0Search in Google Scholar

[29] Abney, J.R., Cutler, B., Fillbach, M.L., Axelrod, D. and Scalettar, B.A. Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J. Cell Biol. 137 (1997) 1459–1468. http://dx.doi.org/10.1083/jcb.137.7.145910.1083/jcb.137.7.1459Search in Google Scholar

[30] Vogelstein, B., Pardoll, D.M. and Coffey, D.S. Supercoiled loops and eucaryotic DNA replicaton. Cell 22 (1980) 79–85. http://dx.doi.org/10.1016/0092-8674(80)90156-710.1016/0092-8674(80)90156-7Search in Google Scholar

[31] Ostermeier, G.C., Liu, Z., Martins, R.P., Bharadwaj, R.R., Ellis, J., Draghici, S. and Krawetz, S.A. Nuclear matrix association of the human beta-globin locus utilizing a novel approach to quantitative real-time PCR. Nucleic Acids Res. 31 (2003) 3257–3266. http://dx.doi.org/10.1093/nar/gkg42410.1093/nar/gkg424Search in Google Scholar

[32] Mielke, C., Kohwi, Y., Kohwi-Shigematsu, T. and Bode, J. Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry 29 (1990) 7475–7485. http://dx.doi.org/10.1021/bi00484a01710.1021/bi00484a017Search in Google Scholar

[33] Kramer, J.A., Adams, M.D., Singh, G.B., Doggett, N.A. and Krawetz, S.A. Extended analysis of the region encompassing the PRM1→PRM2→TNP2 domain: genomic organization, evolution and gene identification. J. Exp. Zool. 282 (1998) 245–253. http://dx.doi.org/10.1002/(SICI)1097-010X(199809/10)282:1/2<245::AID-JEZ26>3.0.CO;2-R10.1002/(SICI)1097-010X(199809/10)282:1/2<245::AID-JEZ26>3.0.CO;2-RSearch in Google Scholar

[34] Laborador, M. and Corces, V.G. Setting the boundaries of chromatin domains and nuclear organization. Cell 111 (2002) 151–154. http://dx.doi.org/10.1016/S0092-8674(02)01004-810.1016/S0092-8674(02)01004-8Search in Google Scholar

[35] Williams, R.R. Transcription and the territory: the ins and outs of gene positioning. Trends Genet. 19 (2003) 298–302. http://dx.doi.org/10.1016/S0168-9525(03)00109-410.1016/S0168-9525(03)00109-4Search in Google Scholar

[36] Heun, P., Laroche, T., Shimada, K., Furrer, P and Gasser, S.M. Chromosome dynamics in the yeast interphase nucleus. Science 294 (2001) 2181–2186. http://dx.doi.org/10.1126/science.106536610.1126/science.1065366Search in Google Scholar

[37] Melcak, I., Cermanova, S., Jirsova, K., Koberna, K., Malinsky, J. and Raska, I. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol. Biol. Cell 11 (2000) 497–510. Search in Google Scholar

[38] Donev, R.M., Doneva, T.A., Bowen, W.R. and Sheer, D. HnRNP-A1 binds directly to double-stranded DNA in vitro within a 36 bp sequence. Mol. Cell. Biochem. 233 (2002) 181–185. http://dx.doi.org/10.1023/A:101550431872610.1023/A:1015504318726Search in Google Scholar

[39] Cremer, T., Kupper, K., Dietzel, S and Fakan, S. Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol. Cell 96 (2004) 555–567. http://dx.doi.org/10.1016/j.biolcel.2004.07.00210.1016/j.biolcel.2004.07.002Search in Google Scholar

[40] Krawetz, S.A., Draghici, S., Goodrich, R., Liu, Z and Ostermeier, G.C., In Silico and wet-bench identification of nuclear matrix attachment regions. in: Hypertension, Methods and Protocols (Fennell, J.P., Baker, A.H., Eds.), Vol. 108, Humana Press, 2004, 439–458. 10.1385/1-59259-850-1:439Search in Google Scholar

[41] Bode, J., Stengert-Iber, M., Kay, V., Schlake, T and Dietz-Pfeilstetter, A. Scaffold/matrix-attached regions: topological switches with multiple regulatory functions. Crit. Rev. Eukaryot. Gene Expr. 6 (1996) 115–138. 10.1615/CritRevEukarGeneExpr.v6.i2-3.20Search in Google Scholar

[42] Kramer, J.A., McCarrey, J.R., Djakiew, D and Krawetz, S.A. Differentiation: the selective potentiation of chromatin domains. Development 125 (1998) 4749–4755. Search in Google Scholar

[43] Gerasimova, T.I. and Corces, V.G. Boundary and insulator elements in chromosomes. Curr. Opin. Genet. Dev. 6 (1996) 185–192. http://dx.doi.org/10.1016/S0959-437X(96)80049-910.1016/S0959-437X(96)80049-9Search in Google Scholar

[44] Cook, P.R. The organization of replication and transcription. Science 284 (1999) 1790–1795. http://dx.doi.org/10.1126/science.284.5421.179010.1126/science.284.5421.1790Search in Google Scholar PubMed

[45] Leonhardt, H., Rahn, H.P., Weinzierl, P., Sporbert, A., Cremer, T., Zink, D and Cardoso, M.C. Dynamics of DNA replication factories in living cells. J. Cell Biol. 149 (2000) 271–280. http://dx.doi.org/10.1083/jcb.149.2.27110.1083/jcb.149.2.271Search in Google Scholar PubMed PubMed Central

[46] Strissel, P.L., Espinosa, R., III, Rowley, J.D and Swift, H. Scaffold attachment regions in centromere-associated DNA. Chromosoma 105 (1996) 122–133. http://dx.doi.org/10.1007/s00412005016710.1007/BF02509522Search in Google Scholar PubMed

[47] Lammerding, J., Schulze, P.C., Takahashi, T., Kozlov, S., Sullivan, T., Kamm, R.D., Stewart, C.L and Lee, R.T. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113 (2004) 370–378. http://dx.doi.org/10.1172/JCI20041967010.1172/JCI200419670Search in Google Scholar

[48] Vorlickova, M., Chladkova, J., Kejnovska, I., Fialova, M and Kypr, J. Guanine tetraplex topology of human telomere DNA is governed by the number of (TTAGGG) repeats. Nucleic Acids Res. 33 (2005) 5851–5860. http://dx.doi.org/10.1093/nar/gki89810.1093/nar/gki898Search in Google Scholar

[49] Moyzis, R.K., Buckingham, J.M., Cram, L.S., Dani, M., Deaven, L.L., Jones, M.D., Meyne, J., Ratliff, R.L and Wu, J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. U.S.A. 85 (1988) 6622–6626. http://dx.doi.org/10.1073/pnas.85.18.662210.1073/pnas.85.18.6622Search in Google Scholar

[50] Lobov, I.B., Tsutsui, K., Mitchell, A.R and Podgornaya, O.I. Specificity of SAF-A and lamin B binding in vitro correlates with the satellite DNA bending state. J. Cell. Biochem. 83 (2001) 218–229. http://dx.doi.org/10.1002/jcb.122010.1002/jcb.1220Search in Google Scholar

[51] Frisch, M., Frech, K., Klingenhoff, A., Cartharius, K., Liebich, I and Werner, T. In silico prediction of scaffold/matrix attachment regions in large genomic sequences. Genome Res. 12 (2002) 349–354. http://dx.doi.org/10.1101/gr.206602. Article published online before print in January 2002Search in Google Scholar

[52] Singh, G.B., Kramer, J.A and Krawetz, S.A. Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucleic Acids Res. 25 (1997) 1419–1425. http://dx.doi.org/10.1093/nar/25.7.141910.1093/nar/25.7.1419Search in Google Scholar

[53] van Drunen, C.M., Sewalt, R.G., Oosterling, R.W., Weisbeek, P.J., Smeekens, S.C and van Driel, R. A bipartite sequence element associated with matrix/scaffold attachment regions. Nucleic Acids Res. 27 (1999) 2924–2930. http://dx.doi.org/10.1093/nar/27.14.292410.1093/nar/27.14.2924Search in Google Scholar

[54] Rudd, S., Frisch, M., Grote, K., Meyers, B.C., Mayer, K and Werner, T. Genome-wide in silico mapping of scaffold/matrix attachment regions in Arabidopsis suggests correlation of intragenic scaffold/matrix attachment regions with gene expression. Plant Physiol. 135 (2004) 715–722. http://dx.doi.org/10.1104/pp.103.03786110.1104/pp.103.037861Search in Google Scholar

[55] Morgenstern, B., Dress, A and Werner, T. Multiple DNA and protein sequence alignment based on segment-to-segment comparison. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 12098–12103. http://dx.doi.org/10.1073/pnas.93.22.1209810.1073/pnas.93.22.12098Search in Google Scholar

[56] Needleman, S.B. and Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48 (1970) 443–453. http://dx.doi.org/10.1016/0022-2836(70)90057-410.1016/0022-2836(70)90057-4Search in Google Scholar

[57] Quandt, K., Frech, K., Karas, H., Wingender, E and Werner, T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23 (1995) 4878–4884. Search in Google Scholar

[58] Wolfertstetter, F., Frech, K., Herrmann, G and Werner, T. Identification of functional elements in unaligned nucleic acid sequences by a novel tuple search algorithm. Comput. Appl. Biosci. 12 (1996) 71–80. Search in Google Scholar

[59] Tarhio, J. and Ukkonen, E. Approximate Boyer-Moore String Matching. 2005; Available from: http://www.cs.hut.fi/:_tarhio/papers/abm.ps.gz. Search in Google Scholar

[60] RA Baeza-Yates, G.G. Fast text searching for regular expressions or automaton searching on tries. Journal of the A.C.M. 43 (1996) 915–936. Search in Google Scholar

[61] Donev, R., Horton, R., Beck, S., Doneva, T., Vatcheva, R., Bowen, W.R and Sheer, D. Recruitment of heterogeneous nuclear ribonucleoprotein A1 in vivo to the LMP/TAP region of the major histocompatibility complex. J. Biol. Chem. 278 (2003) 5214–5226. http://dx.doi.org/10.1074/jbc.M20662120010.1074/jbc.M206621200Search in Google Scholar PubMed

[62] Wang, H., Noordewier, M and Benham, C.J. Stress-induced DNA duplex destabilization (SIDD) in the E. coli genome: SIDD sites are closely associated with promoters. Genome Res. 14 (2004) 1575–1584. http://dx.doi.org/10.1101/gr.208000410.1101/gr.2080004Search in Google Scholar PubMed PubMed Central

[63] Bi, C. and Benham, C.J. WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA. Bioinformatics 20 (2004) 1477–1479. http://dx.doi.org/10.1093/bioinformatics/bth30410.1093/bioinformatics/bth304Search in Google Scholar

[64] Benham, C.J. and Bi, C. The analysis of stress-induced duplex destabilization in long genomic DNA sequences. J. Comput. Biol. 11 (2004) 519–543. http://dx.doi.org/10.1089/cmb.2004.11.51910.1089/cmb.2004.11.519Search in Google Scholar

[65] Benham, C., Kohwi-Shigematsu, T and Bode, J. Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. J. Mol. Biol. 274 (1997) 181–196. http://dx.doi.org/10.1006/jmbi.1997.138510.1006/jmbi.1997.1385Search in Google Scholar

[66] Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C and Kohwi-Shigematsu, T. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255 (1992) 195–197. Search in Google Scholar

[67] Vassetzky, Y.S., Bogdanova, A.N and Razin, S.V. Analysis of the chicken DNA fragments that contain structural sites of attachment to the nuclear matrix: DNA-matrix interactions and replication. J. Cell. Biochem. 79 (2000) 1–14. http://dx.doi.org/10.1002/1097-4644(2000)79:1<1::AID-JCB20>3.0.CO;2-Y10.1002/1097-4644(2000)79:1<1::AID-JCB20>3.0.CO;2-YSearch in Google Scholar

[68] Girard-Reydet, C., Gregoire, D., Vassetzky, Y and Mechali, M. DNA replication initiates at domains overlapping with nuclear matrix attachment regions in the xenopus and mouse c-myc promoter. Gene 332 (2004) 129–138. http://dx.doi.org/10.1016/j.gene.2004.02.03110.1016/j.gene.2004.02.031Search in Google Scholar

[69] Beaudouin, J., Gerlich, D., Daigle, N., Eils, R and Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108 (2002) 83–96. http://dx.doi.org/10.1016/S0092-8674(01)00627-410.1016/S0092-8674(01)00627-4Search in Google Scholar

[70] Benham, C.J. Stress-induced DNA duplex destabilization in transcriptional initiation. Pac. Symp. Biocomput. (2001) 103–114. Search in Google Scholar

[71] Benham, C.J. Torsional stress and local denaturation in supercoiled DNA. Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 3870–3874. http://dx.doi.org/10.1073/pnas.76.8.387010.1073/pnas.76.8.3870Search in Google Scholar

[72] Fye, R.M. and Benham, C.J. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA. Phys. Rev. E. 59 (1999) 3408–3426. http://dx.doi.org/10.1103/PhysRevE.59.340810.1103/PhysRevE.59.3408Search in Google Scholar

[73] Chengpeng Bi, C.J.B. The approximate algorithm for analysis of the strand separation transition in super helical DNA using nearest neighbor energetics. Proceedings of the IEEE Computer Society Conference on Bioinformatics (2003) 460. Search in Google Scholar

[74] Rogozin, I.B., Glazko, G.V and Glazkov, M.V. Computer prediction of sites associated with various elements of the nuclear matrix. Brief. Bioinform. 1 (2000) 33–44. http://dx.doi.org/10.1093/bib/1.1.3310.1093/bib/1.1.33Search in Google Scholar

[75] Glazko, G.V., Rogozin, I.B and Glazkov, M.V. Comparative study and prediction of DNA fragments associated with various elements of the nuclear matrix. Biochim. Biophys. Acta 1517 (2001) 351–364. Search in Google Scholar

[76] Baldi, P. and Brunak, S. Bioinformatics: the machine learning approach: Adaptive computation and machine learning. (Dietterich, T., Ed.), 2nd edition, MIT Press, Cambridge, Mass., 2001, 1–452. Search in Google Scholar

[77] Kramer, J.A., Adams, M.D., Singh, G.B., Doggett, N.A and Krawetz, S.A. A matrix associated region localizes the human SOCS-1 gene to chromosome 16p13.13. Somat. Cell Mol. Genet. 24 (1998) 131–133. http://dx.doi.org/10.1023/B:SCAM.0000007115.58601.8710.1023/B:SCAM.0000007115.58601.87Search in Google Scholar

[78] Singh, G.B. and Krawetz, S.A., Data Mining for Discovering Matrix Association Regions (MARs). in: Data mining and knowledge discovery: theory, toolsand technology II. (Dasarathy, B.V.E., Ed.), Proceedings of Spie, (2000) 330–341. Search in Google Scholar

[79] Purbowasito, W., Suda, C., Yokomine, T., Zubair, M., Sado, T., Tsutsui, K and Sasaki, H. Large-scale identification and mapping of nuclear matrix-attachment regions in the distal imprinted domain of mouse chromosome 7. DNA Res. 11 (2004) 391–407. http://dx.doi.org/10.1093/dnares/11.6.39110.1093/dnares/11.6.391Search in Google Scholar

[80] Ubbink, J. and Odijk, T. Electrostatic-undulatory theory of plectonemically supercoiled DNA. Biophys. J. 76 (1999) 2502–2519. http://dx.doi.org/10.1016/S0006-3495(99)77405-910.1016/S0006-3495(99)77405-9Search in Google Scholar

[81] Belmont, A.S., Sedat, J.W and Agard, D.A. A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J. Cell Biol. 105 (1987) 77–92. http://dx.doi.org/10.1083/jcb.105.1.7710.1083/jcb.105.1.77Search in Google Scholar PubMed PubMed Central

Published Online: 2006-6-1
Published in Print: 2006-6-1

© 2006 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-006-0016-4/html
Scroll to top button