Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 20, 2007

The identification of QTLs associated with the in vitro response of rye (Secale cereale L.)

  • Hanna Bolibok EMAIL logo , Anna Gruszczyńska , Aneta Hromada-Judycka and Monika Rakoczy-Trojanowska

Abstract

This study was conducted in order to identify quantitative trait loci (QTLs) for the in vitro culture response of winter rye (Secale cereale L.) immature embryos and immature inflorescences. A genetic linkage map comprising 67 SSRs, 9 ISSRs, 13 SAMPLs, 7 RAPDs, 2 SCARs and one EST marker was created based on the analyses of 102 recombinant inbred lines from the cross between lines L318 (which has a good response in tissue cultures) and L9 (which is unable to regenerate plants from somatic tissues and anthers). The map spans 979.2 cM, and the average distance between markers is 9.9 cM. Two characteristics were evaluated: callus induction (CI) and somatic embryogenesis ability (SE). They were expressed as the percentage of immature embryos/inflorescences producing callus (designated ECI/ICI) and the percentage of explants producing somatic embryos (ESE/ISE). All the analysed traits showed continuous variation in the mapping population but a non-normal frequency distribution. We identified nine putative QTLs controlling the tissue culture response of rye, explaining up to 41.6% of the total phenotypic variation: two QTLs for ECI — eci-1, eci-2; 4 for ESE — ece-1, ese-2, ese-3, ese-4; 2 for ICI — ici-1, ici2; and 1 for ISE — ise-1. They were detected on chromosomes 1R, 4R, 5R, 6R and 7R.

[1] Rybczyński, J.J. In vitro culture of Secale cereale L. explants — callus formation and organ differentiation. Acta Soc. Bot. Pol. 49 (1980) 155–166. Search in Google Scholar

[2] Rakoczy-Trojanowska, M. and Malepszy, S. Genetic factors influencing regeneration ability in rye (Secale cereale L.). I. Immature inflorescences. Theor. Appl. Genet. 86 (1993) 406–410. http://dx.doi.org/10.1007/BF0083855410.1007/BF00838554Search in Google Scholar

[3] Zimny, J. and Lörz, H. High frequency of somatic embryogenesis and plant regeneration of rye (Secale cereale L.). Plant Breed. 102 (1989) 89–100. http://dx.doi.org/10.1111/j.1439-0523.1989.tb00320.x10.1111/j.1439-0523.1989.tb00320.xSearch in Google Scholar

[4] Linacero, R. and Vazquez, A.M. Somatic embryogenesis from immature inflorescences of rye. Plant Science 72 (1990) 253–258. http://dx.doi.org/10.1016/0168-9452(90)90089-710.1016/0168-9452(90)90089-7Search in Google Scholar

[5] Rakoczy-Trojanowska, M. and Malepszy, S. Genetic factors influencing the regeneration ability of rye (Secale cereale L.). II. Immature embryos. Euphytica 83 (1995) 233–239. http://dx.doi.org/10.1007/BF0167813510.1007/BF01678135Search in Google Scholar

[6] Popelka, J.C. and Altpeter, F. Interactions between genotypes and culture media components for improved in vitro response of rye (Secale cereale L.) inbred lines. Plant Cell Rep. 20 (2001) 575–582. http://dx.doi.org/10.1007/s00299010036910.1007/s002990100369Search in Google Scholar

[7] Krumbiegel-Schroeren, G., Schroeren, V. and Binding, H. Embroid formation and plant regeneration from callus of Secale cereale. Z. Pflanzenzüchtg. 92 (1984) 89–94. Search in Google Scholar

[8] Flehinghaus-Roux, T., Deimling, S. and Geiger, H.H. Anther culture ability in Secale cereale L. Plant Breed. 114 (1995) 259–261. http://dx.doi.org/10.1111/j.1439-0523.1995.tb00807.x10.1111/j.1439-0523.1995.tb00807.xSearch in Google Scholar

[9] Bolibok, H. and Rakoczy-Trojanowska, M. Genetic mapping of QTLs for tissue-culture response in plants. Euphytica 149 (2006) 73–83. http://dx.doi.org/10.1007/s10681-005-9055-610.1007/s10681-005-9055-6Search in Google Scholar

[10] Taguchi-Shiobara, F., Lin, S.Y., Tanno, K., Komatsuda, T., Yano, M., Sasaki, T. and Oka, S. Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor. Appl. Genet. 95 (1997) 828–833. http://dx.doi.org/10.1007/s00122005063210.1007/s001220050632Search in Google Scholar

[11] Ben Amer, I.M., Korzun, V., Worland, A.J. and Börner, A. Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor. Appl. Genet. 94 (1997) 1047–1052. http://dx.doi.org/10.1007/s00122005051310.1007/s001220050513Search in Google Scholar

[12] Murigneux, A., Bentollila, S., Hardy, T., Baud, S., Guitton, C., Jullien, H., Ben Tahar S., Freyssinet, G. and Beckert, M. Genotypic variation of quantitative trait loci controlling in vitro androgenesis in maize. Genome 37 (1994) 970–976. http://dx.doi.org/10.1139/g94-13710.1139/g94-137Search in Google Scholar PubMed

[13] Mano, Y. and Komatsuda, T. Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.). Theor. Appl. Genet. 105 (2002) 708–715. http://dx.doi.org/10.1007/s00122-002-0992-310.1007/s00122-002-0992-3Search in Google Scholar

[14] Murashige, F. And Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15 (1962) 473–497 http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x10.1111/j.1399-3054.1962.tb08052.xSearch in Google Scholar

[15] Bliss, C.I. The Transformation of Percentages for Use in the Analysis of Variance. Ohio J. Sci. 38 (1938) 9–12. Search in Google Scholar

[16] Murray, M.G., and Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 8 (1980) 4321–4325. http://dx.doi.org/10.1093/nar/8.19.432110.1093/nar/8.19.4321Search in Google Scholar

[17] Bolibok, H., Rakoczy-Trojanowska, M., Wyrzykowska, M., Radecka, M. and Orczyk, W. Identification of microsatellite markers in the rye genome. Cell. Mol. Biol. Lett. 11 (2006) 291–298. http://dx.doi.org/10.2478/s11658-006-0023-510.2478/s11658-006-0023-5Search in Google Scholar

[18] Saal, B. and Wricke, G. Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42 (1999) 964–972. http://dx.doi.org/10.1139/gen-42-5-96410.1139/gen-42-5-964Search in Google Scholar

[19] Hackauf, B. and Wehling, P. Identification of microsatellite polymorphisms in expressed portion of the rye genome. Plant Breed. 121 (2002) 17–25. http://dx.doi.org/10.1046/j.1439-0523.2002.00649.x10.1046/j.1439-0523.2002.00649.xSearch in Google Scholar

[20] Khlestkina, E.K., Than, M.H.M., Pestsova, E.G., Röder, M.S., Malyshev, S.V., Korzun, V. and Börner, A. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor. Appl. Genet. 19 (2004) 725–732. http://dx.doi.org/10.1007/s00122-004-1659-z10.1007/s00122-004-1659-zSearch in Google Scholar

[21] Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P. and Ganal, M.W. A microsatellite map of wheat. Mol. Gen. Genet. 246 (1998) 327–333. http://dx.doi.org/10.1007/BF0028860510.1007/BF00288605Search in Google Scholar

[22] Bolibok, H., Rakoczy-Trojanowska, M., Hromada, A. and Pietrzykowski, R. The efficiency of different PCR-based marker system in assessing genetic diversity among winter rye (Secale cereale L.) inbred lines. Euphytica 146 (2005) 109–115. http://dx.doi.org/10.1007/s10681-005-0548-010.1007/s10681-005-0548-0Search in Google Scholar

[23] Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newberg, L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1 (1987) 174–181. http://dx.doi.org/10.1016/0888-7543(87)90010-310.1016/0888-7543(87)90010-3Search in Google Scholar

[24] Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugen. 12 (1944) 172–175. Search in Google Scholar

[25] Lincoln, S., Daly, M. and Lander, E. Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Report 2nd edn. (1992). Search in Google Scholar

[26] Grosse, B.A., Deimling, S. and Geiger, H.H. Mapping of genes for anther culture ability in rye by molecular markers. Vortr. Pflanzenzuechtg. 35 (1996) 282–283. Search in Google Scholar

[27] Flores Berrios, E., Sarrafi, A., Fabre, F., Alibert, G. and Gentzbittel, L. Genotypic variation and chromosomal location of QTLs for somatic embryogenesis revealed by epidermal layers culture of recombinant inbred lines in the sunflower (Helianthus annuus L.). Theor. Appl. Genet. 101 (2000b) 1307–1312. http://dx.doi.org/10.1007/s00122005161110.1007/s001220051611Search in Google Scholar

[28] Hackauf, B. and Wehling, P. Development of microsatellite markers in rye: map construction. Plant Breed Seed Sci. 48 (2003) 143–151. Search in Google Scholar

[29] Philipp, U., Wehling, P. and Wricke, G. A linkage map of rye. Theor. Appl. Genet. 88 (1994) 243–248. http://dx.doi.org/10.1007/BF0022590410.1007/BF00225904Search in Google Scholar

[30] Senft, P. and Wricke, G. An extended genetic map of rye (Secale cereale L.). Plant Breed. 115 (1996) 508–510. http://dx.doi.org/10.1111/j.1439-0523.1996.tb00966.x10.1111/j.1439-0523.1996.tb00966.xSearch in Google Scholar

[31] Korzun, V., Malyshev, S., Voylokov, A.V. and Börner, A. A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor. Appl. Genet. 102 (2001) 709–717. http://dx.doi.org/10.1007/s00122005170110.1007/s001220051701Search in Google Scholar

[32] Ma, X.F., Wanous, M.K., Houchins, K., Rodriguez Milla, M.A., Goicoechea, P.G., Wang, Z., Xie, M. and Gustafson, J.P. Molecular linkage mapping in rye (Secale cereale L). Theor. Appl. Genet. 102 (2001) 517–523. http://dx.doi.org/10.1007/s00122005167610.1007/s001220051676Search in Google Scholar

[33] He, P., Sheng, L., Lu, C., Chen, Y. and Zhu, L. Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol. Breed. 4 (1998) 165–172. http://dx.doi.org/10.1023/A:100969222115210.1023/A:1009692221152Search in Google Scholar

[34] Manninen, O.M. Associations between anther-culture response and molecular markers on chromosomes 2H, 3H and 4H of barley (Hordeum vulgare L.). Theor. Appl. Genet. 100 (2000) 57–62. http://dx.doi.org/10.1007/s00122005000810.1007/s001220050008Search in Google Scholar

[35] Torp, A.M., Hansen, A.L. and Andersen, S.B. Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119 (2001) 377–387. http://dx.doi.org/10.1023/A:101755412990410.1023/A:1017554129904Search in Google Scholar

[36] Kwon, Y.S., Kim, K.M., Eun, M.Y. and Sohn, J.K. QTL mapping and associated marker selection for the efficacy of green plant regeneration in anther culture of rice. Plant Breed. 12 (2002) 10–16. http://dx.doi.org/10.1046/j.1439-0523.2002.00664.x10.1046/j.1439-0523.2002.00664.xSearch in Google Scholar

[37] Lazar, M.D., Chen, T.H.H., Scoles, G.J. and Kartha, K.K. Immature embryo and anther culture of chromosome addition lines of rye in Chinese Spring wheat. Plant Sci. 51 (1987) 77–81. http://dx.doi.org/10.1016/0168-9452(87)90222-610.1016/0168-9452(87)90222-6Search in Google Scholar

[38] Nishimura, A., Ashikari, M., Lin, S., Takashi, T., Angeles, E.R., Yamamoto, T. and Matsuoka, M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc. Natl. Acad. Sci. USA 102 (2005) 11940–11944. http://dx.doi.org/10.1073/pnas.050422010210.1073/pnas.0504220102Search in Google Scholar PubMed PubMed Central

[39] Hromada, A., Bolibok, H. and Rakoczy-Trojanowska, M. Application of the GDDSC for the isolation of winter rye (Secale cereale L.) genome regions connected with in vitro reaction of immature embryos. Vortr. Pflanzenzuechtg, in press. Search in Google Scholar

Published Online: 2007-6-20
Published in Print: 2007-12-1

© 2007 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-007-0023-0/html
Scroll to top button