Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 10, 2009

The transcriptional regulation and cell-specific expression of the MAPK-activated protein kinase MK5

  • Nancy Gerits EMAIL logo , Alexey Shiryaev , Sergiy Kostenko , Helle Klenow , Olga Shiryaeva , Mona Johannessen and Ugo Moens

Abstract

The mitogen-activated protein kinase (MAPK) cascades regulate important cellular processes, including growth, differentiation, apoptosis, embryogenesis, motility and gene expression. Although MAPKs mostly appear to be constitutively expressed, the transcript levels of some MAPK-encoding genes increase upon treatment with specific stimuli. This applies to the MAPKactivated protein kinases MK2 and MK3. By contrast, the transcriptional regulation of the related MK5 has not yet been studied. The MK5 promoters of mouse, rat and human contain a plethora of putative transcription factor sites, and the spatio-temporal expression of MK5 suggests inducible transcription of the gene. We examined the transcription pattern of MK5 in different tissues, and studied the kinetics of MK5 expression at the transcriptional and/or translation level in PC12 cells exposed to arsenite, forskolin, KCl, lipopolysaccharide, spermine NONOate, retinoic acid, serum, phorbol ester, temperature shock, and vanadate. Cells exposed to forskolin display a transient increase in MK5 mRNA, despite their unaltered MK5 protein levels. The MK5 promoters of human, mouse and rat contain a cAMP-responsive element that binds the cAMPresponsive element-binding protein (CREB) in vitro. Luciferase reporter constructs containing an 850-base pair human MK5 promoter fragment encompassing the CRE showed a basal activity that was 10-fold higher than the corresponding construct in which the CRE motif was deleted. siRNA-mediated depletion of CREB had no effect on the endogenous MK5 protein levels. Several binding motifs for heat shock factor are dispersed in the mouse and rat promoter, and temperature shock transiently enhanced the MK5 transcript levels. None of the other tested stimuli had an effect on the MK5 mRNA or protein levels. Our results indicate an inducible regulation of MK5 transcription in response to specific stimuli. However, the MK5 protein levels remained unaffected by all the stimuli tested. There is still no explanation for the discrepancy between the increased mRNA and unchanged MK5 protein levels.

[1] Manning, G., Whyte, D.B., Martinez, R. and Hunter, T. The protein kinase complement of the human genome. Science 298 (2002) 1912–1934. http://dx.doi.org/10.1126/science.107576210.1126/science.1075762Search in Google Scholar PubMed

[2] Imajo, M., Tsuchiya, Y. and Nishida, E. Regulatory mechanisms and functions of MAP kinase signalling pathways. IUBMB Life 58 (2006) 312–317. http://dx.doi.org/10.1080/1521654060074639310.1080/15216540600746393Search in Google Scholar PubMed

[3] Raman, M., Chen, W. and Cobb, M.H. Differential regulation and properties of MAPKs. Oncogene 26 (2007) 3100–3112. http://dx.doi.org/10.1038/sj.onc.121039210.1038/sj.onc.1210392Search in Google Scholar PubMed

[4] Song, F. and Goodman, R.M. OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta 215 (2002) 997–1005. http://dx.doi.org/10.1007/s00425-002-0794-510.1007/s00425-002-0794-5Search in Google Scholar PubMed

[5] Hong, W.F., He, C., Wang, L., Wang, D.J., Joseph, L.M., Jantasuriyarat, C., Dai, L. and Wang, G.L. BWMK1 Responds to Multiple Environmental Stresses and Plant Hormones. J. Integ. Plant Biol. 49 (2007) 843–851. http://dx.doi.org/10.1111/j.1744-7909.2007.00505.x10.1111/j.1744-7909.2007.00505.xSearch in Google Scholar

[6] Fu, S.F., Chou, W.C., Huang, D.D. and Huang, H.J. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Phys. 43 (2002) 958–963. http://dx.doi.org/10.1093/pcp/pcf11110.1093/pcp/pcf111Search in Google Scholar PubMed

[7] Huang, H.J., Fu, S.F., Tai, Y.H., Chou, W.C. and Huang, D.D. Expression of Oryza sativa MAP kinase gene is developmentally regulated and stressresponsive. Physiol. Plant. 114 (2002) 572–580. http://dx.doi.org/10.1034/j.1399-3054.2002.1140410.x10.1034/j.1399-3054.2002.1140410.xSearch in Google Scholar PubMed

[8] Ma, S. and Bohnert H.J. Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol. 8 (2007) R49. http://dx.doi.org/10.1186/gb-2007-8-4-r4910.1186/gb-2007-8-4-r49Search in Google Scholar PubMed PubMed Central

[9] Mizoguchi, Y., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K. and Shinozaki, K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Nat. Acad. Sci. USA 93 (1996) 765–769. http://dx.doi.org/10.1073/pnas.93.2.76510.1073/pnas.93.2.765Search in Google Scholar PubMed PubMed Central

[10] Rasar, M., DeFranco, D.B. and Hammes, S. R. Paxillin regulates steroidtriggered meiotic resumption in oocytes by enhancing an all-or-none positive feedback kinase loop. J. Biol. Chem. 281 (2006) 39455–39464. http://dx.doi.org/10.1074/jbc.M60895920010.1074/jbc.M608959200Search in Google Scholar PubMed

[11] Schneider, E.M., Weiss, M., Du, W., Leder, G., Buttenschön, K, Liener, U.C. and Brückner, U.B. MAPkinase gene expression, as determined by microarray analysis, distinguishes uncomplicated from complicated reconstitution after major surgical trauma. Ann. N.Y. Acad. Sci. 1090 (2006) 429–444. http://dx.doi.org/10.1196/annals.1378.04610.1196/annals.1378.046Search in Google Scholar

[12] Fambrough, D., McClure, K., Kazlauskas, A. and Lander, E.S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97 (1999) 727–741. http://dx.doi.org/10.1016/S0092-8674(00)80785-010.1016/S0092-8674(00)80785-0Search in Google Scholar

[13] Reynolds, L.J. and Richards, R.J. Can toxicogenomics provide information on the bioreactivity of diesel exhaust particles? Toxicology 165 (2001) 145–152. http://dx.doi.org/10.1016/S0300-483X(01)00417-610.1016/S0300-483X(01)00417-6Search in Google Scholar

[14] Gaestel, M. MAPKAP kinases — MKs — two’s company, three’s a crowd. Nat. Rev. Mol. Cell. Biol. 7 (2006) 120–130. http://dx.doi.org/10.1038/nrm183410.1038/nrm1834Search in Google Scholar PubMed

[15] Maizels, E.T., Mukherjee, A., Sithanandam, G., Peters, C.A., Cottom, J., Mayo, K.E. and Hunzicker-Dunn, M. Developmental regulation of mitogenactivated protein kinase-activated kinases-2 and -3 (MAPKAPK-2/-3) in vivo during corpus luteum formation in the rat. Mol. Endocrinol. 15 (2001) 716–733. http://dx.doi.org/10.1210/me.15.5.71610.1210/me.15.5.716Search in Google Scholar

[16] Vician, L.J., Xu, G., Liu, W., Feldman, J.D., Machado, H.B. and Herschman, H.R. MAPKAP kinase-2 is a primary response gene induced by depolarization in PC12 cells and in brain. J. Neurosci. Res. 78 (2004) 315–328. http://dx.doi.org/10.1002/jnr.2025110.1002/jnr.20251Search in Google Scholar PubMed

[17] Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M. and Sassone-Corsi, P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Nat. Acad. Sci. USA 99 (2002) 7728–7733. http://dx.doi.org/10.1073/pnas.10207559910.1073/pnas.102075599Search in Google Scholar PubMed PubMed Central

[18] Johannessen, M., Delghandi, M.P., Seternes, O.M., Johansen, B. and Moens, U. Synergistic activation of CREB-mediated transcription by forskolin and phorbol ester requires PKC and depends on the glutamine-rich Q2 transactivation domain. Cell. Signal. 16 (2004) 1187–1199. http://dx.doi.org/10.1016/j.cellsig.2004.03.00910.1016/j.cellsig.2004.03.009Search in Google Scholar PubMed

[19] Moens, U., Subramaniam, N., Johansen, B., Johansen, T. and Traavik, T. A steroid hormone response unit in the late leader of the noncoding control region of the human polyomavirus BK confers enhanced host cell permissivity. J. Virol. 68 (1994) 2398–2408. Search in Google Scholar

[20] Mikalsen, T., Johannessen, M. and Moens, U. Sequence- and positiondependent tagging protects extracellular-regulated kinase 3 protein from 26S proteasome-mediated degradation. Int. J. Biochem. Cell Biol. 37 (2005) 2513–2520. http://dx.doi.org/10.1016/j.biocel.2005.06.00710.1016/j.biocel.2005.06.007Search in Google Scholar PubMed

[21] New, L., Jiang, Y., Zhao, M., Liu, K., Zhu, W., Flood, L.J., Kato, Y., Parry, G.C.N. and Han, J. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 17 (1998) 3372–3384. http://dx.doi.org/10.1093/emboj/17.12.337210.1093/emboj/17.12.3372Search in Google Scholar PubMed PubMed Central

[22] Ni, H., Wang, X.S., Diener, K. and Yao, Z. MAPKAPK5, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase. Biochem. Biophys. Res. Commun. 243 (1998) 492–496. http://dx.doi.org/10.1006/bbrc.1998.813510.1006/bbrc.1998.8135Search in Google Scholar

[23] Natale, D.R., Paliga, A.J.M., Beier, F., D’Souza, S.J.A. and Watson, A.J. p38 MAPK signaling during murine preimplantation development. Dev. Biol. 268 (2004) 76–88. http://dx.doi.org/10.1016/j.ydbio.2003.12.01110.1016/j.ydbio.2003.12.011Search in Google Scholar

[24] Paliga, A.J., Natale, D.R. and Watson, A.J. p38 mitogen-activated protein kinase (MAPK) first regulates filamentous actin at the 8–16-cell stage during preimplantation development. Biol. Cell 97 (2005) 629–640. http://dx.doi.org/10.1042/BC2004014610.1042/BC20040146Search in Google Scholar

[25] Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Pruss, M., Reuter, I. and Schacherer, F. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 28 (2000) 316–319. http://dx.doi.org/10.1093/nar/28.1.31610.1093/nar/28.1.316Search in Google Scholar

[26] Ryseck, R.P. and Bravo, R. c-JUN, JUN B, and JUN D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of FOS proteins. Oncogene 6 (1991) 533–542. Search in Google Scholar

[27] Johannessen, M. and Moens, U. Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front. Biosci. 12 (2007) 1814–1832. Search in Google Scholar

[28] Fass, D.M., Butler, J.E.F. and Goodman, R.H. Deacetylase activity is required for cAMP activation of a subset of CREB target genes. J. Biol. Chem. 278 (2003) 43014–43019. http://dx.doi.org/10.1074/jbc.M30590520010.1074/jbc.M305905200Search in Google Scholar

[29] Johannessen, M. and Moens, U. Transcription of genes in response to activated cAMP/protein kinase A signalling pathway: There is more to it than CREB. In: Trends in Cellular Signalling (Caplin, D., Ed.). Nova Science Publishers. New York, 2005, 41–78. Search in Google Scholar

[30] Ravnskjaer, K., Kester, H., Liu, Y., Zhang, X., Lee, D., Yates, J.R. 3rd and Montminy, M. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J. 26 (2007) 2880–2889. http://dx.doi.org/10.1038/sj.emboj.760171510.1038/sj.emboj.7601715Search in Google Scholar

[31] Lee, W., Mitchell, P. and Tjian, R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49 (1987) 741–752. http://dx.doi.org/10.1016/0092-8674(87)90612-X10.1016/0092-8674(87)90612-XSearch in Google Scholar

[32] Imagawa, M., Chiu, R., and Karin, M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell 51 (1987) 251–260. http://dx.doi.org/10.1016/0092-8674(87)90152-810.1016/0092-8674(87)90152-8Search in Google Scholar

[33] Luscher, B., Mitchell, P.J., Williams, T. and Tjian, R. (1989). Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev. 3 (1989) 1507–1517. http://dx.doi.org/10.1101/gad.3.10.150710.1101/gad.3.10.1507Search in Google Scholar PubMed

[34] Crowe, D.L., Kim, R. and Chandraratna, R.A.S. Retinoic acid differentially regulates cancer cell proliferation via dose-dependent modulation of the mitogen-activated protein kinase pathway. Mol. Cancer Res. 1 (2003) 532–540. Search in Google Scholar

[35] Kim, S.W., Hong, J.S., Ryu, S.H., Chung, W.C., Yoon, J.H. and Koo, J.S. Regulation of mucin gene expression by CREB via a nonclassical retinoic acid signalling pathway. Mol. Cell. Biol. 27 (2007) 6933–6947. http://dx.doi.org/10.1128/MCB.02385-0610.1128/MCB.02385-06Search in Google Scholar PubMed PubMed Central

[36] De Ruiter, N.D., Wolthuis, R.M.F., van Dam, H., Burgering, B.M.T. and Bos, J.L. Ras-dependent regulation of c-Jun phosphorylation is mediated by the Ral guanine nucleotide exchange factor-Ral pathway. Mol. Cell. Biol. 20 (2000) 8480–8488. http://dx.doi.org/10.1128/MCB.20.22.8480-8488.200010.1128/MCB.20.22.8480-8488.2000Search in Google Scholar

[37] Kitta, K., Day, R.M., Kim, Y., Torregroza, I., Evans, T. and Suzuki, Y.J. (2002). Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells. J. Biol. Chem. 278 (2002) 4705–4712. http://dx.doi.org/10.1074/jbc.M21161620010.1074/jbc.M211616200Search in Google Scholar

[38] Johannessen, M., Delghandi, M.P., and Moens, U. What turns CREB on? Cell. Signal. 16 (2004) 1211–1227. http://dx.doi.org/10.1016/j.cellsig.2004.05.00110.1016/j.cellsig.2004.05.001Search in Google Scholar

[39] Imagawa, S., Fujii, S., Dong, J., Furumoto, T., Kaneko, T., Zaman, T., Satoh, Y., Tsutsui, H. and Sobel, B.E. Hepatocyte growth factor regulates E box-dependent plasminogen activator inhibitor type 1 gene expression in HepG2 liver cells. Arterioscler. Thromb. Vasc. Biol. 26 (2006) 2407–2413. http://dx.doi.org/10.1161/01.ATV.0000240318.61359.e310.1161/01.ATV.0000240318.61359.e3Search in Google Scholar

[40] Coulombe, P., Rodier, G., Pelletier, S., Pellerin, J. and Meloche, S. Rapid turnover of extracellular signal-regulated kinase 3 by the ubiquitinproteasome pathway defines a novel paradigm of mitogen-activated protein kinase regulation during cellular differentiation. Mol. Cell. Biol. 23 (2003) 4542–4558. http://dx.doi.org/10.1128/MCB.23.13.4542-4558.200310.1128/MCB.23.13.4542-4558.2003Search in Google Scholar

[41] Seternes, O.M., Mikalsen, T., Johansen, B., Michaelsen, E., Armstrong, C.G., Morrice, N.A., Turgeon, B., Meloche, S., Moens, U. and Keyse S.M. Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J. 23 (2004) 4780–4791. http://dx.doi.org/10.1038/sj.emboj.760048910.1038/sj.emboj.7600489Search in Google Scholar

[42] Vo, N., Klein, M.E., Varlamova, O., Keller, D.M., Yamamoto, T., Goodman, R.H. and Impey, S. A cAMP-response element binding proteininduced microRNA regulates neuronal morphogenesis. Proc. Nat. Acad. Sci. USA 102 (2005) 16426–16431. http://dx.doi.org/10.1073/pnas.050844810210.1073/pnas.0508448102Search in Google Scholar

[43] Fusco, D., Accornero, N., Lavole, B., Shenoy, S.M., Blanchard, J.M., Singer, R.H. and Bertrand, E. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13 (2003) 161–167. http://dx.doi.org/10.1016/S0960-9822(02)01436-710.1016/S0960-9822(02)01436-7Search in Google Scholar

[44] Santangelo, P.J., Nix, B., Tsourkas, A. and Bao, G. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res. 32 (2004) e57. http://dx.doi.org/10.1093/nar/gnh06210.1093/nar/gnh062Search in Google Scholar PubMed PubMed Central

[45] Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G.S., Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G., and Goodman, R.H. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119 (2004) 1041–1054. Search in Google Scholar

[46] Zhang, X., Odom, D.T., Koo, S.H., Conkright, M.D., Canettieri, G., Best, J., Chen, H., Jenner, R., Herbolsheimer, E., Jacobsen, E., Kadam, S., Ecker, J.R., Emerson, B., Hogenesch, J.B., Unterman, T., Young, R.A. and Montminy, M. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Nat. Acad. Sci. USA 102 (2005) 4459–4464. http://dx.doi.org/10.1073/pnas.050107610210.1073/pnas.0501076102Search in Google Scholar PubMed PubMed Central

[47] Montminy, M. Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66 (1997) 807–822. http://dx.doi.org/10.1146/annurev.biochem.66.1.80710.1146/annurev.biochem.66.1.807Search in Google Scholar PubMed

[48] Thomas, T., Hitti, E., Kotlyarov, A., Potschka, H., and Gaestel, M. (2008). Eur. J. Neurosci. 28 (2008) 642–654. http://dx.doi.org/10.1111/j.1460-9568.2008.06382.x10.1111/j.1460-9568.2008.06382.xSearch in Google Scholar PubMed

[49] Gerits, N., Mikalsen, T., Kostenko, S., Shiryaev, A., Johannessen, M. and Moens, U. Modulation of F-actin rearrangement by the cyclic AMP/PKA pathway is mediated by MAPKAP Kinase 5 and requires PKA-induced nuclear export of MK5. J. Biol. Chem. 282 (2007) 37232–37243. http://dx.doi.org/10.1074/jbc.M70487320010.1074/jbc.M704873200Search in Google Scholar PubMed

[50] Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. and Wheeler, D.L. GenBank. Nucleic Acids Res. 35 (2007) D21–25. http://dx.doi.org/10.1093/nar/gkl98610.1093/nar/gkl986Search in Google Scholar PubMed PubMed Central

Published Online: 2009-9-10
Published in Print: 2009-12-1

© 2009 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-009-0020-6/html
Scroll to top button