Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 24, 2010

ZFAT is essential for endothelial cell assembly and the branch point formation of capillary-like structures in an angiogenesis model

  • Yasuhiro Yoshida EMAIL logo , Toshiyuki Tsunoda , Yasuo Takashima , Takahiro Fujimoto , Keiko Doi , Takehiko Sasazuki , Masahide Kuroki , Akinori Iwasaki and Senji Shirasawa

Abstract

ZFAT, originally identified as a susceptibility gene for autoimmune thyroid disease, encodes a transcriptional regulator with one AT-hook and 18 C2H2-type zinc-finger domains. It is highly conserved among species. Here, we demonstrate that ZFAT is clearly expressed in human umbilical vein endothelial cells (HUVECs). Furthermore, we show that endothelial cell assembly and the branch point formation of capillary-like structures in HUVECs is impaired by the reduction of ZFAT expression through the use of ZFAT-miRNAs, whereas differences in cell proliferation or apoptotic features were not observed after the reduction in ZFAT expression. These results suggest that ZFAT may have critical roles in the capillary-like network formation that is involved in vascular remodeling. Elucidating the ZFAT-mediated transcriptional network will lead to a better understanding of the molecular mechanisms of angiogenesis.

[1] Shirasawa, S., Harada, H., Furugaki, K., Akamizu, T., Ishikawa, N., Ito, K., Ito, K., Tamai, H., Kuma, K., Kubota, S., Hiratani, H., Tsuchiya, T., Baba, I., Ishikawa, M., Tanaka, M., Sakai, K., Aoki, M., Yamamoto, K. and Sasazuki, T. SNPs in the promoter of a B cell-specific antisense transcript, SAS-ZFAT, determine susceptibility to autoimmune thyroid disease. Hum. Mol. Genet. 13 (2004) 2221–2231. http://dx.doi.org/10.1093/hmg/ddh24510.1093/hmg/ddh245Search in Google Scholar PubMed

[2] Koyanagi, M., Nakabayashi, K., Fujimoto, T., Gu, N., Baba, I., Takashima, Y., Doi, K., Harada, H., Kato, N., Sasazuki, T. and Shirasawa, S. ZFAT expression in B and T lymphocytes and identification of ZFAT-regulated genes. Genomics 91 (2008) 451–457. http://dx.doi.org/10.1016/j.ygeno.2008.01.00910.1016/j.ygeno.2008.01.009Search in Google Scholar PubMed

[3] Fujimoto, T., Doi, K., Koyanagi, M., Tsunoda, T., Takashima, Y., Yoshida, Y., Sasazuki, T. and Shirasawa, S. ZFAT is an antiapoptotic molecule and critical for cell survival in MOLT-4 cells. FEBS Lett. 583 (2009) 568–572. http://dx.doi.org/10.1016/j.febslet.2008.12.06310.1016/j.febslet.2008.12.063Search in Google Scholar PubMed

[4] Comabella, M., Craig, D.W., Morcillo-Suárez, C., Río, J., Navarro, A., Fernández, M., Martin, R. and Montalban X. Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch. Neurol. 66 (2009) 972–978. http://dx.doi.org/10.1001/archneurol.2009.15010.1001/archneurol.2009.150Search in Google Scholar PubMed

[5] Takeuchi, F., Nabika, T., Isono, M., Katsuya, T., Sugiyama, T., Yamaguchi, S., Kobayashi, S., Yamori, Y., Ogihara, T. and Kato N. Evaluation of genetic loci influencing adult height in the Japanese population. J. Hum. Genet. 54 (2009) 749–752. http://dx.doi.org/10.1038/jhg.2009.9910.1038/jhg.2009.99Search in Google Scholar PubMed

[6] Cho, Y.S., Go, M.J., Kim, Y.J., Heo, J.Y., Oh, J.H., Ban, H.J., Yoon, D., Lee, M.H., Kim, D.J., Park, M., Cha, S.H., Kim, J.W., Han, B.G., Min, H., Ahn, Y., Park, M.S., Han, H.R., Jang, H.Y., Cho, E.Y., Lee, J.E., Cho, N.H., Shin, C., Park, T., Park, J.W., Lee, J.K., Cardon, L., Clarke, G., McCarthy, M.I., Lee, J.Y., Lee, J.K., Oh, B. and Kim, H.L. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41 (2009) 527–534. http://dx.doi.org/10.1038/ng.35710.1038/ng.357Search in Google Scholar PubMed

[7] Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6 (2000) 389–395. http://dx.doi.org/10.1038/7465110.1038/74651Search in Google Scholar PubMed

[8] Gary H. Gibbons, and Victor J. Dzau. The Emerging Concept of Vascular Remodeling. N. Engl. J. Med. 330 (2000) 1431–1438. Search in Google Scholar

[9] Carmeliet, P. and Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407 (2000) 249–257. http://dx.doi.org/10.1038/3502522010.1038/35025220Search in Google Scholar PubMed

[10] Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438 (2005) 932–936. http://dx.doi.org/10.1038/nature0447810.1038/nature04478Search in Google Scholar PubMed

[11] Mor, F., Quintana, F.J. and Cohen, I.R. Angiogenesis-inflammation crosstalk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J. Immunol. 172 (2004) 4618–4623. Search in Google Scholar

[12] Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L. and Bussolino, F. Modeling the early stages of vascular network assembly. EMBO J. 22 (2003) 1771–1779. http://dx.doi.org/10.1093/emboj/cdg17610.1093/emboj/cdg176Search in Google Scholar PubMed PubMed Central

[13] Mizukami, Y., Kohgo, Y. and Chung, D.C. Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin. Cancer Res. 13 (2007) 5670–5674. http://dx.doi.org/10.1158/1078-0432.CCR-07-011110.1158/1078-0432.CCR-07-0111Search in Google Scholar

[14] Moehler, T.M., Ho, A.D., Goldschmidt, H. and Barlogie, B. Angiogenesis in hematologic malignancies. Crit. Rev. Oncol. Hematol. 45 (2003) 227–244. http://dx.doi.org/10.1016/S1040-8428(02)00135-X10.1016/S1040-8428(02)00135-XSearch in Google Scholar

[15] Kamei, M., Saunders, W.B., Bayless, K.J., Dye, L., Davis, G.E. and Weinstein, B.M. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442 (2006) 453–456. http://dx.doi.org/10.1038/nature0492310.1038/nature04923Search in Google Scholar PubMed

[16] Merks, R.M., Brodsky, S.V., Goligorksy, M.S., Newman, S.A. and Glazier, J.A. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289 (2006) 44–54. http://dx.doi.org/10.1016/j.ydbio.2005.10.00310.1016/j.ydbio.2005.10.003Search in Google Scholar PubMed PubMed Central

[17] Sottile, J. Regulation of angiogenesis by extracellular matrix. Biochim. Biophys. Acta 1654 (2004) 13–22. Search in Google Scholar

[18] Tammela, T., Zarkada, G., Wallgard, E., Murtomäki, A., Suchting, S., Wirzenius, M., Waltari, M., Hellström, M., Schomber, T., Peltonen, R., Freitas, C., Duarte, A., Isoniemi, H., Laakkonen, P., Christofori, G., Yla-Herttuala, S., Shibuya, M., Pytowski, B., Eichmann, A., Betsholtz, C. and Alitalo, K. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454 (2008) 656–660. http://dx.doi.org/10.1038/nature0708310.1038/nature07083Search in Google Scholar PubMed

[19] Staton, C.A., Reed, M.W. and Brown, N.J. A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 90 (2009) 195–221. Search in Google Scholar

[20] Tsunoda, T., Takashima, Y., Fujimoto, T., Koyanagi, M., Yoshida, Y., Doi, K., Tanaka, Y., Kuroki, M., Sasazuki, T. and Shirasawa, S. Three-dimensionally specific inhibition of DNA repair-related genes by activated KRAS in colon crypt model. Neoplasia 12 (2010) 397–404. Search in Google Scholar

Published Online: 2010-9-24
Published in Print: 2010-12-1

© 2010 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-010-0028-y/html
Scroll to top button