Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter January 13, 2011

ZFAT is a critical molecule for cell survival in mouse embryonic fibroblasts

  • Keiko Doi EMAIL logo , Takahiro Fujimoto , Midori Koyanagi , Toshiyuki Tsunoda , Yoko Tanaka , Yasuhiro Yoshida , Yasuo Takashima , Masahide Kuroki , Takehiko Sasazuki and Senji Shirasawa

Abstract

ZFAT was originally identified as an immune-related transcriptional regulator containing 18 C2H2-type zinc-finger domains and one AT-hook. ZFAT is highly conserved among species and functions as an anti-apoptotic molecule in the lymphoblastic leukemia cell line, MOLT-4. We recently demonstrated that ZFAT is an essential molecule for hematopoietic differentiation in blood islands through the direct regulation of particular transcriptional factors, including Tal1, for endothelial cell assembly, and for the branch point formation of capillary-like structures. However, the molecular mechanisms underlying the anti-apoptotic function of ZFAT remain unknown. Here, we report that ZFAT knockdown by small interfering RNA induced apoptosis in mouse embryonic fibroblasts (MEFs). This response had been similarly observed for MOLT-4 cells. To explore the molecular mechanisms for ZFAT in anti-apoptotic function in both MEFs and MOLT-4 cells, microarray expression analysis and quantitative RT-PCR were done. Of interest was that Bcl-2 and Il6st were identified as commonly down-regulated genes by the depletion of ZFAT for both MEFs and MOLT-4 cells. These results suggest that ZFAT is a critical molecule for cell survival in MEFs and MOLT-4 cells at least in part through the regulation of the apoptosis involved in the BCL-2- and IL6st-mediated pathways. Further elucidation of the molecular functions for ZFAT might shed light on the cellular programs in the mesoderm-derived cells.

[1] Jacobson, E.M. and Tomer, Y. The CD40, CTLA-4, thyroglobulin, TSH receptor, and PTPN22 gene quintet and its contribution to thyroid autoimmunity: back to the future. J. Autoimmun. 28 (2007) 85–98. http://dx.doi.org/10.1016/j.jaut.2007.02.00610.1016/j.jaut.2007.02.006Search in Google Scholar PubMed PubMed Central

[2] Sakai, K., Shirasawa, S., Ishikawa, N., Ito, K., Tamai, H., Kuma, K., Akamizu, T., Tanimura, M., Furugaki, K., Yamamoto, K. and Sasazuki, T. Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto’s thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum. Mol. Genet. 10 (2001) 1379–1386. http://dx.doi.org/10.1093/hmg/10.13.137910.1093/hmg/10.13.1379Search in Google Scholar PubMed

[3] Shirasawa, S., Harada, H., Furugaki, K., Akamizu, T., Ishikawa, N., Ito, K., Tamai, H., Kuma, K., Kubota, S., Hiratani, H., Tsuchiya, T., Baba, I., Ishikawa, M., Tanaka, M., Sakai, K., Aoki, M., Yamamoto, K. and Sasazuki, T. SNPs in the promoter of a B cell-specific antisense transcript, SAS-ZFAT, determine susceptibility to autoimmune thyroid disease. Hum. Mol. Genet. 13 (2004) 2221–2231. http://dx.doi.org/10.1093/hmg/ddh24510.1093/hmg/ddh245Search in Google Scholar PubMed

[4] Koyanagi, M., Nakabayashi, K., Fujimoto, T., Gu, N., Baba, I., Takashima, Y., Doi, K., Harada, H., Kato, N., Sasazuki, T. and Shirasawa, S. ZFAT expression in B and T lymphocytes and identification of ZFAT-regulated genes. Genomics 91 (2008) 451–457. http://dx.doi.org/10.1016/j.ygeno.2008.01.00910.1016/j.ygeno.2008.01.009Search in Google Scholar PubMed

[5] Fujimoto, T., Doi, K., Koyanagi, M., Tsunoda, T., Takashima, Y., Yoshida, Y., Sasazuki, T. and Shirasawa, S. ZFAT is an antiapoptotic molecule and critical for cell survival in MOLT-4 cells. FEBS Lett. 583 (2009) 568–572. http://dx.doi.org/10.1016/j.febslet.2008.12.06310.1016/j.febslet.2008.12.063Search in Google Scholar PubMed

[6] Tsunoda, T., Takashima, Y., Tanaka, Y., Fujimoto, T., Doi, K., Hirose, Y., Koyanagi, M., Yoshida, Y., Okamura, T., Kuroki, M., Sasazuki, T. and Shirasawa, S. Immune-related zinc finger gene ZFAT is an essential transcriptional regulator for hematopoietic differentiation in blood islands. Proc. Natl. Acad. Sci. USA 107 (2010) 14199–14204. http://dx.doi.org/10.1073/pnas.100249410710.1073/pnas.1002494107Search in Google Scholar PubMed PubMed Central

[7] Yoshida, Y., Tsunoda, T., Takashima, Y., Fujimoto, T., Doi, K., Sasazuki, T., Kuroki, M., Iwasaki, A. and Shirasawa, S. ZFAT is essential for endothelial cell assembly and the branch point formation of capillary-like structures in an angiogenesis model. Cell. Mol. Biol. Lett. 15 (2010) 541–550. http://dx.doi.org/10.2478/s11658-010-0028-y10.2478/s11658-010-0028-ySearch in Google Scholar PubMed PubMed Central

[8] Takeuchi, F., Nabika, T., Isono, M., Katsuya, T., Sugiyama, T., Yamaguchi, S., Kobayashi, S., Yamori, Y., Ogihara, T. and Kato, N. Evaluation of genetic loci influencing adult height in the Japanese population. J. Hum. Genet. 54 (2009) 749–752. http://dx.doi.org/10.1038/jhg.2009.9910.1038/jhg.2009.99Search in Google Scholar PubMed

[9] Comabella, M., Craig, D.W., Morcillo-Suarez, C., Rio, J., Navarro, A., Fernandez, M., Martin, R. and Montalban, X. Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch. Neurol. 66 (2009) 972–978. http://dx.doi.org/10.1001/archneurol.2009.15010.1001/archneurol.2009.150Search in Google Scholar PubMed

[10] Chao, D.T. and Korsmeyer, S.J. BCL-2 family: regulators of cell death. Annu. Rev. Immunol. 16 (1998) 395–419. http://dx.doi.org/10.1146/annurev.immunol.16.1.39510.1146/annurev.immunol.16.1.395Search in Google Scholar PubMed

[11] Hirano, T., Nakajima, K. and Hibi, M. Signaling mechanisms through gp130: a model of the cytokine system. Cytokine Growth Factor Rev. 8 (1997) 241–252. http://dx.doi.org/10.1016/S1359-6101(98)80005-110.1016/S1359-6101(98)80005-1Search in Google Scholar PubMed

[12] Fukada, T., Hibi, M., Yamanaka, Y., Takahashi-Tezuka, M., Fujitani, Y., Yamaguchi, T., Nakajima, K. and Hirano, T. Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity 5 (1996) 449–460. http://dx.doi.org/10.1016/S1074-7613(00)80501-410.1016/S1074-7613(00)80501-4Search in Google Scholar PubMed

[13] Peterson, T.R., Laplante, M., Thoreen, C.C., Sancak, Y., Kang, S.A., Kuehl, W.M., Gray, N.S. and Sabatini, D.M. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137 (2009) 873–886. http://dx.doi.org/10.1016/j.cell.2009.03.04610.1016/j.cell.2009.03.046Search in Google Scholar PubMed PubMed Central

[14] Proud, C.G. Dynamic balancing: DEPTOR tips the scales. J. Mol. Cell. Biol. 1 (2009) 61–63. http://dx.doi.org/10.1093/jmcb/mjp01210.1093/jmcb/mjp012Search in Google Scholar PubMed

[15] Wang, E.S., Teruya-Feldstein, J., Wu, Y., Zhu, Z., Hicklin, D.J. and Moore, M.A. Targeting autocrine and paracrine VEGF receptor pathways inhibits human lymphoma xenografts in vivo. Blood 104 (2004) 2893–2902. http://dx.doi.org/10.1182/blood-2004-01-022610.1182/blood-2004-01-0226Search in Google Scholar PubMed

[16] Santos, S.C. and Dias, S. Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood 103 (2004) 3883–3889. http://dx.doi.org/10.1182/blood-2003-05-163410.1182/blood-2003-05-1634Search in Google Scholar PubMed

[17] Lee, Y.K., Bone, N.D., Strege, A.K., Shanafelt, T.D., Jelinek, D.F. and Kay, N.E. VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 104 (2004) 788–794. http://dx.doi.org/10.1182/blood-2003-08-276310.1182/blood-2003-08-2763Search in Google Scholar PubMed

[18] Bellamy, W.T., Richter, L., Sirjani, D., Roxas, C., Glinsmann-Gibson, B., Frutiger, Y., Grogan, T.M. and List, A.F. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 97 (2001) 1427–1434. http://dx.doi.org/10.1182/blood.V97.5.142710.1182/blood.V97.5.1427Search in Google Scholar PubMed

[19] Das, B., Yeger, H., Tsuchida, R., Torkin, R., Gee, M.F., Thorner, P.S., Shibuya, M., Malkin, D. and Baruchel, S. A hypoxia-driven vascular endothelial growth factor/Flt1 autocrine loop interacts with hypoxiainducible factor-1alpha through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathway in neuroblastoma. Cancer Res. 65 (2005) 7267–7275. http://dx.doi.org/10.1158/0008-5472.CAN-04-457510.1158/0008-5472.CAN-04-4575Search in Google Scholar PubMed

[20] Lee, T.H., Seng, S., Sekine, M., Hinton, C., Fu, Y., Avraham, H.K. and Avraham, S. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med. 4 (2007) e186. http://dx.doi.org/10.1371/journal.pmed.004018610.1371/journal.pmed.0040186Search in Google Scholar PubMed PubMed Central

Published Online: 2011-1-13
Published in Print: 2011-3-1

© 2011 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-010-0041-1/html
Scroll to top button