Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 26, 2011

The role of P63 in cancer, stem cells and cancer stem cells

  • Marta Nekulova EMAIL logo , Jitka Holcakova , Philip Coates and Borivoj Vojtesek

Abstract

The transcription factor p63 has important functions in tumorigenesis, epidermal differentiation and stem cell self-renewal. The TP63 gene encodes multiple protein isoforms that have different or even antagonistic roles in these processes. The balance of p63 isoforms, together with the presence or absence of the other p53 family members, p73 and p53, has a striking biological impact. There is increasing evidence that interactions between p53-family members, whether cooperative or antagonistic, are involved in various cell processes. This review summarizes the current understanding of the role of p63 in tumorigenesis, metastasis, cell migration and senescence. In particular, recent data indicate important roles in adult stem cell and cancer stem cell regulation and in the response of cancer cells to therapy.

[1] Kaghad, M., Bonnet, H., Yang, A., Creancier, L., Biscan, J.C., Valent, A., Minty, A., Chalon, P., Lelias, J.M., Dumont, X., Ferrara, P., McKeon, F. and Caput, D. Monoallelically expressed gene related to p53 at 1p63, a region frequently deleted in neuroblastoma and other human cancers. Cell 90 (1997) 809–819. Search in Google Scholar

[2] Yang, A.N., Kaghad, M., Wang, Y.M., Gillett, E., Fleming, M.D., Dotsch, V., Andrews, N.C., Caput, D. and McKeon, F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2 (1998) 305–316. Search in Google Scholar

[3] Joerger, A.C., Rajagopalan, S., Natan, E., Veprintsev, D.B., Robinson, C.V. and Fersht, A.R. Structural evolution of p53, p63, and p73: Implication for heterotetramer formation. Proc. Natl. Acad. Sci. USA 106 (2009) 17705–17710. 10.1073/pnas.0905867106Search in Google Scholar PubMed PubMed Central

[4] Stifanic, M., Micic, M., Ramsak, A., Blaskovic, S., Ruso, A., Zahn, R. and Batel, R. p63 in Mytilus galloprovincialis and p53 family members in the phylum Mollusca. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 154 (2009) 264–273. 10.1016/j.cbpb.2009.06.011Search in Google Scholar PubMed

[5] Dohn, M., Zhang, S.Z. and Chen, X.B. p63 alpha and Delta Np63 alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20 (2001) 3193–3205. Search in Google Scholar

[6] Wu, G., Nomoto, S., Hoque, M., Dracheva, T., Osada, M., Lee, C., Dong, S., Guo, Z., Benoit, N., Cohen, Y., Rechthand, P., Califano, J., Moon, C.S., Ratovitski, E., Jen, J., Sidransky, D. and Trink, B. Delta Np63 alpha and TAp63 alpha regulate transcription of genes with distinct biological functions in cancer and development. Canc. Res. 63 (2003) 2351–2357. Search in Google Scholar

[7] Osada, M., Park, H.L., Nagakawa, Y., Yamashita, K., Fomenkov, A., Kim, M.S., Wu, G.J., Nomoto. S., Trink, B. and Sidransky D. Differential recognition of response elements determines target gene specificity for p53 and p63. Mol. Cell. Biol. 25 (2005) 6077–6089. Search in Google Scholar

[8] Testoni, B., Borrelli, S., Tenedini, E., Alotto, D., Castagnoli, C., Piccolo, S., Tagliafico, E., Ferrari, S., Vigano, M.A. and Mantovani R. Identification of new p63 targets in human keratinocytes. Cell Cycle 5 (2006) 2805–2811. Search in Google Scholar

[9] Yang, A., Zhu, Z., Kapranov, P., McKeon, F., Church, G.M., Gingeras, T.R. and Struhl, K. Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol. Cell 24 (2006) 593–602. Search in Google Scholar

[10] Vigano, M.A., Lamartine, J., Testoni, B., Merico, D., Alotto, D., Castagnoli, C., Robert, A., Candi, E., Melino, G., Gidrol, X. and Mantovani, R. New p63 targets in keratinocytes identified by a genome-wide approach. EMBO J. 25 (2006) 5105–5116. Search in Google Scholar

[11] Mangiulli, M., Valletti, A., Caratozzolo, M.F., Tullo, A., Sbisa, E., Pesole, G. and D’Erchia, A.M. Identification and functional characterization of two new transcriptional variants of the human p63 gene. Nucl. Acid. Res. 37 (2009) 6092–6104. Search in Google Scholar

[12] Thanos, C.D. and Bowie, J.U. p53 Family members p63 and p73 are SAM domain-containing proteins. Prot. Sci. 8 (1999) 1708–1710. Search in Google Scholar

[13] Serber, Z., Lai, H.C., Yang, A., Ou, H.D., Sigal, M.S., Kelly, A.E., Darimont, B.D., Duijf, P.H.G., van Bokhoven, H., McKeon, F. and Dötsch, V. A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Mol. Cell. Biol. 22 (2002) 8601–8611. Search in Google Scholar

[14] Sayan, B.S., Sayan, A.E., Yang, A.L., Aqeilan, R.I., Candi, E., Coher, G.M., Knight, R.A., Croce, C.M. and Melino, G. Cleavage of the transactivationinhibitory domain of p63 by caspases enhances apoptosis. Proc. Natl. Acad. Sci. USA 104 (2007) 10871–10876. Search in Google Scholar

[15] Ghioni, P., Bolognese, F., Duijf, P.H.G., van Bokhoven, H., Mantovani, R. and Guerrini, L. Complex transcriptional effects of p63 isoforms: Identification of novel activation and repression domains. Mol. Cell. Biol. 22 (2002) 8659–8668. Search in Google Scholar

[16] Helton, E.S., Zhu, J.H. and Chen, X.B. The unique NH2-terminally deleted (Delta N) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the Delta N variant of p63. J. Biol. Chem. 281 (2006) 2533–2542. Search in Google Scholar

[17] Nylander, K., Vojtesek, B., Nenutil, R., Lindgren, B., Roos, G., Wang, Z.X., Sjostrom, B., Dahlqvist, A. and Coates, P.J. Differential expression of p63 isoforms in normal tissues and neoplastic cells. J. Pathol. 198 (2002) 417–427. Search in Google Scholar

[18] Reis-Filho, J.S., Torio, B., Albergaria, A. and Schmitt, F.C. p63 expression in normal skin and usual cutaneous carcinomas. J. Cutan. Pathol. 29 (2002) 517–523. Search in Google Scholar

[19] Di Como, C.J., Urist, M.J., Babayan, I., Drobnjak, M., Hedvat, C.V., Teruya-Feldstein, J., Pohar, K., Hoos, A. and Cordon-Cardo, C. p63 expression profiles in human normal and tumor tissues. Clin. Canc. Res. 8 (2002) 494–501. Search in Google Scholar

[20] Rosenbluth, J.M., Johnson, K., Tang, L.J., Triplett, T. and Pietenpol, J.A. Evaluation of p63 and p73 antibodies for cross-reactivity. Cell Cycle 8 (2009) 3702–3706. Search in Google Scholar

[21] Hedvat, C.V., Teruya-Feldstein, J., Puig, P., Capodieci, P., Dudas, M., Pica, N., Qin, J., Cordon-cardo, C. and Di Como, C.J. Expression of p63 in diffuse large B-cell lymphoma. Appl. Immunohistochem. Mol. Morphol. 13 (2005) 237–242. 10.1097/01.pai.0000142160.52670.ceSearch in Google Scholar PubMed

[22] Livera, G., Petre-Lazar, B., Guerquin, M.J., Trautmann, E., Coffigny, H. and Habert, R. p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction 135 (2008) 3–12. Search in Google Scholar

[23] Suh, E.K., Yang, A., Kettenbach, A., Bamberger, C., Michaelis, A.H., Zhu, Z., Elvin, J.A., Bronson, R.T., Crum, C.P. and McKeon, F. p63 protects the female germ line during meiotic arrest. Nature 444 (2006) 624–628. Search in Google Scholar

[24] Nishi, H., Isaka, K., Sagawa, Y., Usuda, S., Fujito, A., Ito, H., Senoo, M., Kato, H. and Takayama, M. Mutation and transcription analyses of the p63 gene in cervical carcinoma. Int. J. Oncol. 15 (1999) 1149–1153. Search in Google Scholar

[25] Wang, T.Y., Chen, B.F., Yang, Y.C., Chen, H., Wang, Y., Cviko, A., Quade, B.J., Sun, D., Yang, A., McKeon, F.D. and Crum, C.P. Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum. Pathol. 32 (2001) 479–486. Search in Google Scholar

[26] Idrees, M.T., Schlosshauer, P., Li, G. and Burstein, D.E. GLUT1 and p63 expression in endometrial intraepithelial and uterine serous papillary carcinoma. Histopathology 49 (2006) 75–81. Search in Google Scholar

[27] Ito, Y., Takeda, T., Wakasa, K., Tsujimoto, M., Sakon, M. and Matsuura, N. Expression of p73 and p63 proteins in pancreatic adenocarcinoma: p73 overexpression is inversely correlated with biological aggressiveness. Int. J. Mol. Med. 8 (2001) 67–71. Search in Google Scholar

[28] Harmes, D.C., Bresnick, E., Lubin, E.A., Watson, J.K., Heim, K.E., Curtin, J.C., Suskind, A.M., Lamb, J. and DiRenzo, J. Positive and negative regulation of Delta N-p63 promoter activity by p53 and Delta N-p63-alpha contributes to differential regulation of p53 target genes. Oncogene 22 (2003) 7607–7616. Search in Google Scholar

[29] Weinstein, M.H., Signoretti, S. and Loda, M. Diagnostic utility of immunohistochemical staining for p63, a sensitive marker of prostatic basal cells. Mod. Pathol. 15 (2002) 1302–1308. Search in Google Scholar

[30] Chen, B.Y., Liu, J.Y., Chang, H.H., Chang, C.P., Lo, W.Y., Kuo, W.H., Yang, C.R. and Lin, D. Hedgehog is involved in prostate basal cell hyperplasia formation and its progressing towards tumorigenesis. Biochem. Biophys. Res. Commun. 357 (2007) 1084–1089. Search in Google Scholar

[31] Glickman, J.N., Yang, A., Shahsafaei, A., McKeon, F. and Odze, R.D. Expression of p53-related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum. Pathol. 32 (2001) 1157–1165. Search in Google Scholar

[32] Basturk, O., Khanani, F., Sarkar, F., Levi, E., Cheng, J.D. and Adsay, N.V. DeltaNp63 expression in pancreas and pancreatic neoplasia. Mod. Pathol. 18 (2005) 1193–1198. Search in Google Scholar

[33] Koga, F., Kawakami, S., Fujii, Y., Saito, K., Ohtsuka, Y., Iwai, A., Ando, N., Takizawa, T., Kageyama, Y. and Kihara, K. Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin. Cancer Res. 9 (2003) 5501–5507. Search in Google Scholar

[34] Urist, M.J., Di Como, C.J., Lu, M.L., Charytonowicz, E., Verbel, D., Crum, C.P., Ince, T.A., McKeon, F.D. and Cordon-Cardo, C. Loss of p63 expression is associated with tumor progression in bladder cancer. Am. J. Pathol. 161 (2002) 1199–1206. Search in Google Scholar

[35] Park, B.J., Lee, S.J., Kim, J.I., Lee, S.J., Lee, CH., Chang, S.G., Park, J.H. and Chi, S.G. Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res. 60 (2000) 3370–3374. Search in Google Scholar

[36] Koga, F., Kawakami, S., Kumagai, J., Takizawa, T., Ando, N., Arai, G., Kageyama, Y. and Kihara, K. Impaired Delta Np63 expression assocites with reduced beta-catenin and aggressive phenotypes of urothelial neoplasms. Br. J. Cancer. 88 (2003) 740–747. Search in Google Scholar

[37] Yamaguchi, K., Wu, L., Caballero, O.L., Hibi, K., Trink, B., Resto, V., Cairns, P., Okami, K., Koch, W.M., Sidransky, D. and Jen, J. Frequent gain of the p40/p51/p63 gene locus in primary head and neck squamous cell carcinoma. Int. J. Cancer 86 (2000) 684–689. Search in Google Scholar

[38] Thurfjell, N., Coates, P.J., Uusitalo, T., Mahani, D., Dabelsteen, E., Dahlqvist, A., Sjöström, B., Roos, G. and Nylander, K. Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck. Int. J. Oncol. 25 (2004) 27–35. Search in Google Scholar

[39] Zangen, R., Ratovitski, E. and Sidransky, D. DeltaNp63alpha levels correlate with clinical tumor response to cisplatin. Cell Cycle 4 (2005) 1313–1315. Search in Google Scholar

[40] Tannapfel, A., Schmelzer, S., Benicke, M., Klimpfinger, M., Kohlhaw, K., Mössner, J., Engeland, K. and Wittekind, C. Expression of the p53 homologues p63 and p73 in multiple simultaneous gastric cancer. J. Pathol. 195 (2001) 163–170. Search in Google Scholar

[41] Massion, P.P., Taflan, P.M., Jamshedur Rahman, S.M., Yildiz, P., Shyr, Y., Edgerton, M.E., Westfall, M.D., Roberts, J.R., Pietenpol, J.A., Carbone, D.P. and Gonzalez, A.L. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res. 63 (2003) 7113–7121. Search in Google Scholar

[42] Wang, B.Y., Gil, J., Kaufman, D., Gan, L., Kohtz, D.S. and Burstein, D.E. P63 in pulmonary epithelium, pulmonary squamous neoplasms, and other pulmonary tumors. Hum. Pathol. 33 (2002) 921–926. Search in Google Scholar

[43] Ying, H., Chang, D.L., Zheng, H., McKeon, F. and Xiao, Z.X. DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol. Cell. Biol. 25 (2005) 6154–6164. Search in Google Scholar

[44] Osada, M., Inaba, R., Shinohara, H., Hagiwara, M., Nakamura, M. and Ikawa, Y. Regulatory domain of protein stability of human P51/TAP63, a P53 homologue. Biochem. Biophys. Res. Commun. 283 (2001) 1135–1141. 10.1006/bbrc.2001.4905Search in Google Scholar PubMed

[45] Ghioni, P., D’Alessandra, Y., Mansueto, G., Jaffray, E., Hay, R.T., La Mantia, G. and Guerrini, L. The protein stability and transcriptional activity of p63 alpha are regulated by SUMO-1 conjugation. Cell Cycle 4 (2005) 183–190. Search in Google Scholar

[46] Petitjean, A., Ruptier, C., Tribollet, V., Hautefeuille, A., Chardon, F., Cavard, C., Puisieux, A., Hainaut, P. and de Fromentel, C.C. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with Delta Np73. Carcinogenesis 29 (2008) 273–281. Search in Google Scholar

[47] MacPartlin, M., Zeng, S., Lee, H., Stauffer, D., Jin, Y., Thayer, M. and Lu, H. p300 regulates p63 transcriptional activity. J. Biol. Chem. 280 (2005) 30604–30610. Search in Google Scholar

[48] Fomenkov, A., Zangen, R., Huang, Y.P., Osada, M., Guo, Z., Fomenkov, T., Trink, B., Sidransky, D. and Ratovitski, E.A. RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle 3 (2004) 1285–1295. Search in Google Scholar

[49] Chatterjee, A., Chang, X., Sen, T., Ravi, R., Bedi, A. and Sidransky, D. Regulation of p53 family member isoform ΔNp63α by the nuclear factor-κB targeting kinase IκB kinase β. Cancer Res. 70 (2010) 1419–1429. Search in Google Scholar

[50] Wang, N., Guo, L., Rueda, B.R. and Tilly, J.L. Cables1 protects p63 from proteasomal degradation to ensure deletion of cells after genotoxic stress. EMBO J. 11 (2010) 633–639. Search in Google Scholar

[51] Tomlinson, V., Gudmundsdottir, K., Luong, P., Leung, K.-Y., Knebel, A. and Basu, S. JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis. 1,e29 (2010) doi:10.1038/cddis.2010.7. 10.1038/cddis.2010.7Search in Google Scholar PubMed PubMed Central

[52] Kadakia, M., Slader, C. and Berberich, S.J. Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol. 20 (2001) 321–330. Search in Google Scholar

[53] Little, N.A. and Jochemsen, A.G. Hdmx and Mdm2 can repress transcription activation by p53 but not by p63. Oncogene 20 (2001) 4576–4580. Search in Google Scholar

[54] Calabro, V., Mansueto, G., Parisi, T., Vivo, M., Calogero, R.A. and La Mantia, G. The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J. Biol. Chem. 277 (2002) 2674–2681. Search in Google Scholar

[55] Galli, F., Rossi, M., D’Alessandra, Y., De Simone, M., Lopardo, T., Haupt, Y., Alsheich-Bartok, O., Anzi, S., Shaulian, E., Calabro, V., La Mantia, G. and Guerrini, L. MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation. J. Cell. Sci. 123 (2010) 2423–2433. Search in Google Scholar

[56] Lin, Y.L., Sengupta, S., Gurdziel, K., Bell, G.W., Jacks, T. and Flores, E.R. p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet. 5 (2009) e1000680. 10.1371/journal.pgen.1000680Search in Google Scholar PubMed PubMed Central

[57] Lopardo, T., Lo Iacono, N., Marinari, B., Giustizieri, M.L., Cyr, D.G., Merlo, G., Crosti, F., Costanzo, A. and Guerrini, L. Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS One 3 (2008) e2715. 10.1371/journal.pone.0002715Search in Google Scholar PubMed PubMed Central

[58] Gressner, O., Schilling, T., Lorenz, K., Schulze Schleithoff, E., Koch, A., Schulze-Bergkamen, H., Lena, A.M., Candi, E., Terrinoni, A., Catani, M.V., Oren, M., Melino, G., Krammer, P.H., Stremmel, W. and Müller, M. TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J. 24 (2005) 2458–2471. Search in Google Scholar

[59] Antonini, D., Dentice, M., Mahtani, P., De Rosa, L., Della Gatta, G., Mandinova, A., Salvatore, D., Stupka, E. and Missero, C. Tprg, a gene predominantly expressed in skin, is a direct target of the transcription factor p63. J. Invest. Dermatol. 128 (2008) 1676–1685. Search in Google Scholar

[60] Koster, M.I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M. and Roop, D.R. p63 induces key target genes required for epidermal morphogenesis. Proc. Natl. Acad. Sci. USA 104 (2007) 3255–3260. Search in Google Scholar

[61] Gu, X.L., Coates, P.J., Boldrup, L. and Nylander, K. p63 contributes to cell invasion and migration in squamous cell carcinoma of the head and neck. Cancer Lett. 263 (2008) 26–34. Search in Google Scholar

[62] Ihrie, R.A., Marques, M.R., Nguyen, B.T., Horner, J.S., Papazoglu, C., Bronson, R.T., Mills, A.A. and Attardi, L.D. Perp is a p63-regulated gene essential for epithelial integrity. Cell 120 (2005) 843–856. Search in Google Scholar

[63] Wu, G., Nomoto, S., Hoque, M.O., Dracheva, T., Osada, M., Lee, C.C., Dong, S.M., Guo, Z., Benoit, N., Cohen, Y., Rechthand, P., Califano, J., Moon, C.S., Ratovitski, E., Jen, J., Sidransky, D. and Trink, B. DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res. 63 (2003) 2351–2357. Search in Google Scholar

[64] Boldrup, L., Coates, P.J., Gu, X. and Nylander, K. DeltaNp63 isoforms differentially regulate gene expression in squamous cell carcinoma: identification of Cox-2 as a novel p63 target. J. Pathol. 218 (2009) 428–436. Search in Google Scholar

[65] Osada, M., Ohba, M., Kawahara, C., Ishioka, C., Kanamaru, R., Katoh, I., Ikawa, Y., Nimura, Y., Nakagawara, A., Obinata, M. and Ikawa, S. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat. Med. 4 (1998) 839–843. Search in Google Scholar

[66] Sunahara, M., Shishikura, T., Takahashi, M., Todo, S., Yamamoto, N., Kimura, H., Kato, S., Ishioka, C., Ikawa, S., Ikawa, Y. and Nakagawara, A. Mutational analysis of p51A/TAp63gamma, a p53 homolog, in non-small cell lung cancer and breast cancer. Oncogene 18 (1999) 3761–3765. Search in Google Scholar

[67] Hibi, K., Trink, B., Patturajan, M., Westra, W.H., Caballero, O.L., Hill, D.E., Ratovitski, E.A., Jen, J. and Sidransky, D. AIS is an oncogene amplified in squamous cell carcinoma. Proc. Natl. Sci. USA 97 (2000) 5462–5467. Search in Google Scholar

[68] Flores, E.R., Sengupta, S., Miller, J.B., Newman, J.J., Bronson, R., Crowley, D., Yang, A., McKeon, F. and Jacks, T. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7 (2005) 363–373. Search in Google Scholar

[69] Keyes, W.M., Vogel, H., Koster, M.I., Guo, X.C., Qi, Y., Petherbridge, K.M., Roop, D.R., Bradley, A. and Mills, A.A. p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc. Natl. Acad. Sci. USA 103 (2006) 8435–8440. Search in Google Scholar

[70] Keyes, W.M., Wu, Y., Vogel, H., Guo, X.C., Lowe, S.W. and Mills, A.A. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev. 19 (2005) 1986–1999. Search in Google Scholar

[71] Djelloul, S., Tarunina, M., Barnouin, K., Mackay, A. and Jat, P.S. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence. Oncogene 21 (2002) 981–989. Search in Google Scholar

[72] Guo, X.C., Keyes, W.M., Papazoglu, C., Zuber, J., Li, W.Z., Lowe, S.W., Vogel, H. and Mills, A.A. TAp63 induces senescence and suppresses tumorigenesis in vivo. Nature Cell Biol. 11 (2009) 1451–1457. Search in Google Scholar

[73] Koster, M.I., Lu, S.L., White, L.D., Wang, X.J. and Roop, D.R. Reactivation of developmentally expressed p63 isoforms predisposes to tumor development and progression. Cancer Res. 66 (2006) 3981–3986. Search in Google Scholar

[74] Koster, M.I., Kim, S., Mills, A.A., DeMayo, F.J. and Roop, D.R. p63 is the molecular switch for initiation of an epithelial stratification program. Gen. Dev. 18 (2004) 126–131. Search in Google Scholar

[75] Mundt, H.M., Stremmel, W., Melino, G., Krammer, P.H., Schilling, T. and Müller, M. Dominant negative (DeltaN) p63alpha induces drug resistance in hepatocellular carcinoma by interference with apoptosis signaling pathways. Biochem. Biophys. Res. Commun. 396 (2010) 335–341. Search in Google Scholar

[76] Nylander, K., Coates, P.J. and Hall, P.A. Characterization of the expression pattern of p63 alpha and delta Np63 alpha in benign and malignant oral epithelial lesions. Int. J. Cancer. 87 (2000) 368–372. Search in Google Scholar

[77] Crook, T., Nicholls, J.M., Brooks, L., O’Nions, J. and Allday, M.J. High level expression of deltaNp63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 19 (2000) 3439–3444. Search in Google Scholar

[78] Tonon, G., Brennan, C., Protopopov, A., Maulik, G., Feng, B., Zhang, Y., Khatry, D.B., You, M.J., Aguirre, A.J., Martin, E.S., Yang, Z., Ji, H., CHin, L., Wong, K.K. and Depinho, R.A. Common and contrasting genomic profiles among the major human lung cancer subtypes. Cold Spring Harb. Symp. Quant. Biol. 70 (2005) 11–24. Search in Google Scholar

[79] Davison, T.S., Vagner, C., Kaghad, M., Ayed, A., Caput, D. and Arrowsmith, C.H. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J. Biol. Chem. 274 (1999) 18709–18714. Search in Google Scholar

[80] Gaiddon, C., Lokshin, M., Ahn, J., Zhang T., and Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21 (2001) 1874–1887. Search in Google Scholar

[81] Strano, S., Fontemaggi, G., Costanzo, A., Rizzo, M.G., Monti, O., Baccarini, A., Del Sal, G., Levrero, M., Sacchi, A., Oren, M. and Blandino, G. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J. Biol. Chem. 277 (2002) 18817–18826. Search in Google Scholar

[82] Yang, A., Zhu, Z., Kapranov, P., McKeon, F., Church, G.M., Gingeras, T.R. and Struhl, K. Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol. Cell 24 (2006) 593–602. Search in Google Scholar

[83] Romano, R.A., Birkaya, B. and Sinha, S. Defining the regulatory elements in the proximal promoter of Delta Np63 in keratinocytes: Potential roles for Sp1/Sp3, NF-Y, and p63. J. Invest. Dermatol. 126 (2006) 1469–1479. 10.1038/sj.jid.5700297Search in Google Scholar PubMed

[84] Li, N., Li, H., Cherukuri, P., Farzan, S., Harmes, D.C. and DiRenzo, J. TA-p63-gamma regulates expression of Delta N-p63 in a manner that is sensitive to p53. Oncogene 25 (2006) 2349–2359. Search in Google Scholar

[85] Lefkimmiatis, K., Caratozzolo, M.F., Merlo, P., D’Erchia, A.M., Navarro, B., Levrero, M., Sbisa, E. and Tullo, A. p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes. Cancer Res. 69 (2009) 8563–8571. Search in Google Scholar

[86] Leong, C.O., Vidnovic, N., DeYoung, M.P., Sgroi, D. and Ellisen, L.W. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J. Clin. Invest. 117 (2007) 1370–1380. Search in Google Scholar

[87] Silver, D.P., Richardson, A.L., Eklund, A.C., Wang, Z.C., Szallasi, Z., Li, Q., Juul, N., Leong, C.O., Calogrias, D., Buraimoh, A., Fatima, A., Gelman, R.S., Ryan, P.D., Tung, N.M., De Nicolo, A., Ganesan, S., Miron, A., Colin, C., Sgroi, D.C., Ellisen, L.W., Winer, E.P. and Garber, J.E. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J. Clin. Oncol. 28 (2010) 1145–1153. Search in Google Scholar

[88] Rocco, J.W., Leong, C.O., Kuperwasser, N., DeYoung, M.P. and Ellisen, L.W. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9 (2006) 45–56. Search in Google Scholar

[89] Thurfjell, N., Coates, P.J., Vojtesek, B., Benham-Motlagh, P., Eisold, M. and Nylander, K. Endogenous p63 acts as a survival factor for tumour cells of SCCHN origin. Int. J. Mol. Med. 16 (2005) 1065–1070. Search in Google Scholar

[90] Barbieri, C.E., Tang, L.J., Brown, K.A. and Pietenpol, J.A.. Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res. 66 (2006) 7589–7597. Search in Google Scholar

[91] Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., Solari, A., Bobisse, S., Rondina, M.B., Guzzardo, V., Parenti, A.R., Rosato, A., Bicciato, S., Balmain, A. and Piccolo, S. A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137 (2009) 87–98. Search in Google Scholar

[92] Carroll, D.K., Carroll, J.S., Leong, C.O., Cheng, F., Brown, M., Mills, A.A., Brugge, J.S. and Ellisen, L.W. p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biol. 8 (2006) 551–561. Search in Google Scholar

[93] Su, X., Chakravarti, D., Cho, M.S., Liu, L., Gi, Y.J., Lin, Y.L., Leung, M.L., El-Naggar, A., Creighton, C.J., Suraokar, M.B., Wistuba, I. and Flores, E.R. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467 (2010) 986–990. Search in Google Scholar

[94] Bamberger, C., Hafner, A., Schmale, H. and Werner, S. Expression of different p63 variants in healing skin wounds suggests a role of p63 in reepithelialization and muscle repair. Wound Repair Regen. 13 (2005) 41–50. Search in Google Scholar

[95] Thurfjell, N., Coates, P.J., Wahlin, Y.B., Arvidsson, E. and Nylander, K. Downregulation of TAp63 and unaffected levels of p63beta distinguishes oral wounds from SCCHN. Cell Cycle 5 (2006) 555–557. Search in Google Scholar

[96] Ma, D.K, Bonaguidi, M.A., Ming, G.L. and Song, H. Adult neural stem cells in the mammalian central nervous system. Cell. Res. 19 (2009) 672–682. Search in Google Scholar

[97] Gibelli, B., El-Fattah, A, Giugliano, G., Proh, M. and Grosso, E. Thyroid stem cells — danger or resource? Acta Otorhinolaryngol. Ital. 29 (2009) 290–295. Search in Google Scholar

[98] Wu, X., Wang, S., Chen, B. and An, X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res. 340 (2010) 549–567. Search in Google Scholar

[99] Snyder, J.C, Teisanu, R.M. and Stripp, B.R. Endogenous lung stem cells and contribution to disease. J. Pathol. 217 (2009) 254–264. Search in Google Scholar

[100] Little, M.H. and Bertram, J.F. Is there such a thing as a renal stem cell? J. Am. Soc. Nephrol. 20 (2009) 2112–2117. Search in Google Scholar

[101] Pincelli, C. and Marconi, A. Keratinocyte stem cells: friends and foes. J. Cell. Physiol. 225 (2010) 310–315. 10.1002/jcp.22275Search in Google Scholar PubMed

[102] Katsumoto, K., Shiraki, N., Miki, R. and Kume, S. Embryonic and adult stem cell systems in mammals: ontology and regulation. Dev. Growth. Differ. 52 (2010) 115–129. 10.1111/j.1440-169X.2009.01160.xSearch in Google Scholar PubMed

[103] Petersen, O.W. and Polyak, K. Stem cells in the human breast. Cold Spring Harb. Perspect. Biol. 2 (2010) a003160. 10.1101/cshperspect.a003160Search in Google Scholar

[104] Ratajczak, M.Z., Zuba-Surma, E.K., Machalinski, B. and Kucia, M. Bonemarrow-derived stem cells — our key to longevity? J. Appl. Genet. 48 (2007) 307–319. Search in Google Scholar

[105] Beltrami, A.P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B. and Anversa, P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114 (2003) 763–776. Search in Google Scholar

[106] Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W.E., Rendl, M. and Fuchs, E. Defining the epithelial stem cell niche in skin. Science 303 (2004) 359–363. Search in Google Scholar

[107] Collins, C.A. and Partridge, T.A. Self-renewal of the adult skeletal muscle satellite cell. Cell Cycle 4 (2005) 1338–1341. Search in Google Scholar

[108] Herrera, M.B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M.C., Bussolati, B. and Camussi, G. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 24 (2006) 2840–2850. Search in Google Scholar

[109] Yang, A., Schweitzer, R., Sun, D.Q., Kaghad, M., Walker, N., Bronson, R.T., Tabin, C., Sharpe, A., Caput, D., Crum, C. and McKeon, F. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398 (1999) 714–718. Search in Google Scholar

[110] Mills, A.A., Zheng, B.H., Wang, X.J., Vogel, H., Roop, D.R. and Bradley, A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398 (1999) 708–713. Search in Google Scholar

[111] Pellegrini, G., Dellambra, E., Golisano, O., Martinelli, E., Fantozzi, I., Bondanza, S., Ponzin, D., McKeon, F. and De Luca, M. p63 identifies keratinocyte stem cells. Proc. Natl. Acad. Sci. USA. 98 (2001) 3156–3161. 10.1073/pnas.061032098Search in Google Scholar

[112] Barbieri, C.E. and Pietenpol, J.A. p63 and epithelial biology. Exp. Cell. Res. 312 (2006) 695–706. 10.1016/j.yexcr.2005.11.028Search in Google Scholar

[113] Dellavalle, R.P., Egbert, T.B., Marchbank, A., Su, L.J., Lee, L.A. and Walsh, P. CUSP/p63 expression in rat and human tissues. J. Dermat. Sci. 27 (2001) 82–87. Search in Google Scholar

[114] Rizzo, S., Attard, G. and Hudson, D.L. Prostate epithelial stem cells. Cell. Prolif. 38 (2005) 363–374. Search in Google Scholar

[115] Signoretti, S., Waltregny, D., Dilks, J., Isaac, B., Lin, D., Garraway, L., Yang, A., Montironi, R., McKeon, F. and Loda, M. p63 is a prostate basal cell marker and is required for prostate development. Am. J. Pathol. 157 (2000) 1769–1775. Search in Google Scholar

[116] Signoretti, S., Pires, M.M., Lindauer, M., Horner, J.W., Grisanzio, C., Dhar, S., Majumder, P., McKeon, F., Kantoff, P.W., Sellers, W.R., Loda, M. p63 regulates commitment to the prostate cell lineage. Proc. Natl. Acad. Sci. USA 102 (2005) 11355–11360. Search in Google Scholar

[117] Senoo, M., Pinto, F., Crum, C.P. and McKeon, F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129 (2007) 523–536. Search in Google Scholar

[118] Laurikkala, J., Mikkola, M.L., James, M., Tummers, M., Mills, A.A. and Thesleff, I. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 133 (2006) 1553–1563. Search in Google Scholar

[119] Mumm, J.S. and Kopan, R. Notch signaling: From the outside in. Dev. Biol. 228 (2000) 151–165. 10.1006/dbio.2000.9960Search in Google Scholar

[120] Stylianou, S., Clarke, R.B. and Brennan, K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 66 (2006) 1517–1525. Search in Google Scholar

[121] Massi, D., Tarantini, F., Franchi, A., Paglierani, M., Di Serio, C., Pellerito, S., Leoncini, G., Cirino, G., Geppetti, P. and Santucci, M. Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod. Pathol. 19 (2006) 246–254. Search in Google Scholar

[122] Rose, S.L., Kunnimalaiyaan, M., Drenzek, J. and Seiler, N. Notch 1 signaling is active in ovarian cancer. Gynecol. Oncol. 117 (2010) 130–133. Search in Google Scholar

[123] Grudzien, P., Lo, S., Albain, K.S., Robinson, P., Rajan, P., Strack, P.R., Golde, T.E., Miele, L. and Foreman, K.E. Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res. 30 (2010) 3853–3867. Search in Google Scholar

[124] Artavanis-Tsakonas, S., Rand, M.D. and Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284 (1999) 770–776. Search in Google Scholar

[125] Lowell, S., Jones, P., Le Roux, I., Dunne, J. and Watt, F.M. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10 (2000) 491–500. Search in Google Scholar

[126] Rangarajan, A., Talora, C., Okuyama, R., Nicolas, M., Mammucari, C., Oh, H., Aster, J.C., Krishna, S., Metzger, D., Chambon, P., Miele, L., Aguet, M., Radtke, F. and Dotto, G.P. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20 (2001) 3427–3436. Search in Google Scholar

[127] Nickoloff, B.J., Qin, J.Z., Chaturvedi, V., Denning, M.F., Bonish, B. and Miele, L. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocates through NF-kappaB and PPARgamma. Cell Death Differ. 9 (2002) 842–855. Search in Google Scholar

[128] Talora, C., Sgroi, D.C., Crum, C.P. and Dotto, G.P. Specific downmodulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 16 (2002) 2252–2263. Search in Google Scholar

[129] Nicolas, M., Wolfer, A., Raj, K., Kummer, J.A., Mill, P., van Noort, M., Hui, C.C., Clevers, H., Dotto, G.P. and Radtke, F. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet. 33 (2003) 416–421. Search in Google Scholar

[130] Okuyama, R., Ogawa, E., Nagoshi, H., Yabuki, M., Kurihara, A., Terui, T., Aiba, S., Obinata, M., Tagami, H. and Ikawa, S. p53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity. Oncogene 26 (2007) 4478–4488. Search in Google Scholar

[131] Nguyen, B.C., Lefort, K., Mandinova, A., Antonini, D., Devgan, V., Della Gatta, G., Koster, M.I., Zhang, Z., Wang, J., Tommasi di Vignano, A., Kitajewski, J., Chiorino, G., Roop, D.R., Missero, C. and Dotto, G.P. Crossregulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 20 (2006) 1028–1042. Search in Google Scholar

[132] Yugawa, T., Narisawa-Saito, M., Yoshimatsu, Y., Haga, K., Ohno, S., Egawa, N., Fujita, M. and Kiyono, T. ΔNp63α repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Res. 70 (2010) 4034–4044. Search in Google Scholar

[133] Ma, J., Meng, Y., Kwiatkowski, D.J., Chen, X., Peng, H., Sun, Q., Zha, X., Wang, F., Wang, Y., Jing, Y., Zhang, S., Chen, R., Wang, L., Wu, E., Cai, G., Malinowska-Kolodziej, I., Liao, Q., Liu, Y., Zhao, Y., Sun, Q., Xu, K., Dai, J., Han, J., Wu, L., Zhao, R.C., Shen, H. and Zhang, H. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J. Clin. Invest. 120 (2010) 103–114. Search in Google Scholar

[134] Yalcin-Ozuysal, O., Fiche, M., Guitierrez, M., Wagner, K.U., Raffoul, W. and Brisken, C. Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ. 17 (2010) 1600–1612. Search in Google Scholar

[135] Bienz, M. and Clevers, H. Linking colorectal cancer to Wnt signaling. Cell m103 (2000) 311–320. Search in Google Scholar

[136] Logan, C.Y. and Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 20 (2004) 781–810. 10.1146/annurev.cellbio.20.010403.113126Search in Google Scholar

[137] Kléber, M. and Sommer, L. Wnt signaling and the regulation of stem cell function. Curr. Opin. Cell. Biol. 16 (2004) 681–687. 10.1016/j.ceb.2004.08.006Search in Google Scholar

[138] Reya, T. and Clevers, H. Wnt signalling in stem cells and cancer. Nature 434 (2005) 843–850. Search in Google Scholar

[139] Gu, B., Watanabe, K. and Dai, X. Epithelial stem cells: an epigenetic and Wnt-centric perspective. J. Cell. Biochem. 110 (2010) 1279–1287. Search in Google Scholar

[140] Drewelus, I., Göpfert, C., Hippel, C., Dickmanns, A., Damianitsch, K., Pieler, T. and Dobbelstein, M. p63 antagonizes Wnt-induced transcription. Cell Cycle 9 (2010) 580–587. Search in Google Scholar

[141] Iseki, S., Araga, A., Ohuchi, H., Nohno, T., Yoshioka, H., Hayashi, F. and Noji, S. Sonic hedgehog is expressed in epithelial cells during development of whisker, hair, and tooth. Biochem. Biophys. Res. Commun. 218 (1996) 688–693. 10.1006/bbrc.1996.0123Search in Google Scholar

[142] Ho, K.S. and Scott, M.P. Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr. Opin. Neurobiol. 12 (2002) 57–63. 10.1016/S0959-4388(02)00290-8Search in Google Scholar

[143] Freestone, S.H., Marker, P., Grace, O.C., Tomlinson, D.C., Cunha, G.R., Harnden, P. and Thomson, A.A. Sonic hedgehog regulates prostatic growth and epithelial differentiation. Dev. Biol. 264 (2003) 352–362. Search in Google Scholar

[144] Vezina, C.M. and Bushman, A.W. Hedgehog signaling in prostate growth and benign prostate hyperplasia. Curr. Urol. Rep. 8 (2007) 275–280. Search in Google Scholar

[145] Ramalho-Santos, M., Melton, D.A. and McMahon, A.P. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127 (2000) 2763–2772. Search in Google Scholar

[146] Sicklick, J.K., Li, Y.X., Jayaraman, A., Kannangai, R., Qi, Y., Vivekanandan, P., Ludlow, J.W., Owzar, K., Chen, W., Torbenson, M.S. and Diehl, A.M. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 27 (2006) 748–757. Search in Google Scholar

[147] Yoshikawa, K., Shimada, M., Miyamoto, H., Higashijima, J., Miyatani, T., Nishioka, M., Kurita, N., Iwata, T. and Uehara, H. Sonic hedgehog relates to colorectal carcinogenesis. J. Gastroenterol. 44 (2009) 1113–1117. Search in Google Scholar

[148] Dormoy, V., Danilin, S., Lindner, V., Thomas, L., Rothhut, S., Coquard, C., Helwig, J.J., Jacqmin, D., Lang, H. and Massfelder, T. The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth. Mol. Cancer 8 (2009) 123. Search in Google Scholar

[149] Berman, D.M., Karhadkar, S.S., Hallahan, A.R., Pritchard, J.I., Eberhart, C.G., Watkins, D.N., Chen, J.K., Cooper, M.K., Taipale, J., Olson, J.M. and Beachy, P.A. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297 (2002) 1559–1561. Search in Google Scholar

[150] Kubo, M., Nakamura, M., Tasaki, A., Yamanaka, N., Nakashima, H., Nomura, M., Kuroki, S. and Katano, M. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 64 (2004) 6071–6074. Search in Google Scholar

[151] Chen, X., Horiuchi, A., Kikuchi, N., Osada, R., Yoshida, J., Shiozawa, T. and Konishi, I. Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation: it’s inhibition leads to growth suppression and apoptosis. Cancer Sci. 98 (2007) 68–76. Search in Google Scholar

[152] Sheng, T., Li, C., Zhang, X., Chi, S., He, N., Chen, K., McCormick, F., Gatalica, Z. and Xie, J. Activation of the hedgehog pathway in advanced prostate cancer. Mol. Cancer 3 (2004) 29. Search in Google Scholar

[153] Caserta, T.M., Kommagani, R., Yuan, Z.A., Robbins, D.J., Merce, r C.A. and Kadakia, M.P. p63 overexpression induces the expression of sonic hedgehog. Mol. Cancer Res. 4 (2006) 759–768. Search in Google Scholar

[154] Hatsell, S.J. and Cowin, P. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 133 (2006) 3661–3670. Search in Google Scholar

[155] Liu, S., Dontu, G., Mantle, I.D., Patel, S., Ahn, N.S., Jackson, K.W., Suri, P. and Wicha, M.S. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66 (2006) 6063–6071. Search in Google Scholar

[156] Kubo, M., Nakamura, M., Tasaki, A., Yamanaka, N., Nakashima, H., Nomura, M., Kuroki, S. and Katano, M. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 64 (2004) 6071–6074. Search in Google Scholar

[157] Li, N., Singh, S., Cherukuri, P., Li, H., Yuan, Z., Ellisen, L.W., Wang, B., Robbins, D., DiRenzo, J. Reciprocal intraepithelial interactions between TP63 and hedgehog signaling regulate quiescence and activation of progenitor elaboration by mammary stem cells. Stem Cells 26 (2008) 1253–1264. Search in Google Scholar

[158] Boominathan, L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev. 29 (2010) 613–639. Search in Google Scholar

[159] Davidson, M.R., Larsen, J.E., Yang, I.A., Hayward, N.K., Clarke, B.E., Duhig, E.E., Passmore, L.H., Bowman, R.V. and Fong, K.M. MicroRNA-218 is deleted and downregulated in lung squamous cell carcinoma. PLoS One 5 (2010) e12560. 10.1371/journal.pone.0012560Search in Google Scholar PubMed PubMed Central

[160] Melo, S.A. and Esteller, M. Dysregulation of microRNAs in cancer: Playing with fire. FEBS Lett. (2010) Epub ahead of print. 10.1016/j.febslet.2010.08.009Search in Google Scholar PubMed

[161] Grelier, G., Voirin, N., Ay, A.S., Cox, D.G., Chabaud, S., Treilleux, I., Léon-Goddard, S., Rimokh, R., Mikaelian, I., Venoux, C., Puisieux, A., Lasset, C. and Moyret-Lalle, C. Prognostic value of Dicer expression in human breast cancer and association with the mesenchymal phenotype. Br. J. Cancer. 101 (2009) 673–683. Search in Google Scholar

[162] Wang, Y., Medvid, R., Melton, C., Jaenisch, R. and Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39 (2007) 380–385. Search in Google Scholar

[163] Cui, X.S., Shen, X.H. and Kim, N.H. Dicer1 expression in preimplantation mouse embryos: Involvement of Oct3/4 transcription at the blastocyst stage. Biochem. Biophys. Res. Commun. 352 (2007) 231–236. 10.1016/j.bbrc.2006.11.009Search in Google Scholar PubMed

[164] Yi, R., Poy, M.N., Stoffel, M. and Fuchs, E. A skin microRNA promotes differentiation by repressing “stemness”. Nature 452 (2008) 225–229. Search in Google Scholar

[165] Scheel, A.H., Beyer, U., Agami, R. and Dobbelstein, M. Immunofluorescence-based screening identifies germ cell associated microRNA 302 as an antagonist to p63 expression. Cell Cycle 8 (2009) 1426–1432. Search in Google Scholar

[166] Lena, A.M., Shalom-Feuerstein, R., Rivetti di Val Cervo, P., Aberdam, D., Knight, R.A., Melino, G. and Candi, E. miR-203 represses “stemness” by repressing DeltaNp63. Cell Death Differ. 15 (2008) 1187–1195. 10.1038/cdd.2008.69Search in Google Scholar PubMed

[167] Papagiannakopoulos, T., Shapiro, A. and Kosik, K.S. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 68 (2008) 8164–8172. Search in Google Scholar

[168] Manni, I., Artuso, S., Careccia, S., Rizzo, M.G., Baserga, R., Piaggio, G. and Sacchi, A. The microRNA miR-92 increases proliferation of myeloid cells and by targeting p63 modulates the abundance of its isoforms. FASEB J. 23 (2009) 3957–3966. Search in Google Scholar

[169] Chan, J.A., Krichevsky, A.M. and Kosik, K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65 (2005) 6029–6033. Search in Google Scholar

[170] Si, M.L., Zhu, S., Wu, H., Lu, Z., Wu, F. and Mo, Y.Y. miR-21-mediated tumor growth. Oncogene 26 (2007) 2799–2803. Search in Google Scholar

[171] Meng, F., Henson, R., Lang, M., Wehbe, H., Maheshwari, S., Mendell, J.T., Jiang, J., Schmittgen, T.D. and Patel, T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130 (2006) 2113–2129. Search in Google Scholar

[172] Craig, A.L., Holcakova, J., Finlan, L.E., Nekulova, M., Hrstka, R., Gueven, N., DiRenzo, J., Smith, G., Hupp, T.R. and Vojtesek, B. DeltaNp63 transcriptionally regulates ATM to control p53 Serine-15 phosphorylation. Mol. Cancer 9 (2010) 195. Search in Google Scholar

[173] Reya, T., Morrison, S.J., Clarke, M.F. and Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414 (2001) 105–111. Search in Google Scholar

[174] Tan, B.T., Park, C.Y., Ailles, L.E. and Weissman, I.L. The cancer stem cell hypothesis: a work in progress. Lab. Invest. 86 (2006) 1203–1207. 10.1038/labinvest.3700488Search in Google Scholar PubMed

[175] Schatton, T., Frank, N.Y. and Frank, M.H. Identification and targeting of cancer stem cells. Bioessays 31 (2009) 1038–1049. Search in Google Scholar

[176] Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. and Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100 (2003) 3983–3988. Search in Google Scholar

[177] Prince, M.E., Sivanandan, R., Kaczorowski, A., Wolf, G.T., Kaplan, M.J., Dalerba, P., Weissman, I.L., Clarke, M.F. and Ailles, L.E. Identification of a subpopulation of cells with cancer stem cells properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 104 (2007) 973–978. Search in Google Scholar

[178] Boldrup, L., Coates, P.J., Gu, X. and Nylander, K. DeltaNp63 isoforms regulate CD44 and keratins 4, 6, 14 and 19 in squamous cell carcinoma of head and neck. J. Pathol. 213 (2007) 384–391. Search in Google Scholar

[179] Du, Z., Li, J., Wang, L., Bian, C., Wang, Q., Liao, L., Dou, X., Bian, X. and Zhao, R.C. Overexpression of ΔNp63α induces a stem cell phenotype in MCF7 breast carcinoma cell line through the Notch pathway. Cancer Sci. 101 (2010) 2417–2424. Search in Google Scholar

Published Online: 2011-3-26
Published in Print: 2011-6-1

© 2011 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-011-0009-9/html
Scroll to top button