Skip to main content
Log in

Extended phase matching properties of periodically poled potassium titanyl phosphate isomorphs

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We theoretically investigate the properties of extended phase-matching (EPM) for spontaneous parametric down-conversion (SPDC) in four kinds of potassium titanyl phosphate isomorphs (i.e., KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 crystals). The technique is based on Type II 2nd-order nonlinear optic interaction in periodically poled ferroelectric domain structures, where a single photon with a frequency of 2ω generates a pair of photons with frequencies of ω that are orthogonally polarized with respect to each other. Under EPM, both quasi-phase matching (QPM) and group velocity (GV) matching between interacting waves are efficiently satisfied for the generation of a pair of polarization-entangled bi-photon states with frequencies of ω. Our simulation results show that the generated photon pairs have broad spectral bandwidths of over 69 - 95 nm in tele-communication bands, which are much broader than those of the typical non-EPM case (e.g., ~ sub-nm bandwidth when only the QPM, not the GV matching, is achieved). We will describe the EPM properties of the four kinds of KTP isomorphs in terms of interaction type, GV matching wavelength, domain poling period, and spectral bandwidth. We highlight that the KTP isomorphs have nice potential as suitable components for constituting new quantum information processing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner and A. Zeilinger, Quantum Information (Springer, Berlin, 2001).

    MATH  Google Scholar 

  2. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu and A. Imamoglu, Science 290, 2282 (2000).

    Article  ADS  Google Scholar 

  3. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth and J. G. Rarity, Phys. Rev. Lett. 99, 120501 (2007).

    Article  ADS  Google Scholar 

  4. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel and P. Kumar, Opt. Lett. 35, 802 (2010).

    Article  ADS  Google Scholar 

  5. M. A. Horne, A. Shimony and A. Zeilinger, Phys. Rev. Lett. 62, 2209 (1989).

    Article  ADS  Google Scholar 

  6. Z. Y. Ou, X. Y. Zou, L. J. Wang and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).

    Article  ADS  Google Scholar 

  7. J. Brendel, N. Gisin, W. Tittel and H. Zbinden, Phys. Rev. Lett. 82, 2594 (1999).

    Article  ADS  Google Scholar 

  8. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko and Y. H. Shih, Phys. Rev. Lett 75, 4337 (1995).

    Article  ADS  Google Scholar 

  9. F. Steinlechner, M. Gilaberte, M. Jofre, T. Scheidl, J. P. Torres, V. Pruneri and R. Ursin, J. Opt. Soc. Am. B 31, 2068 (2014).

    Article  ADS  Google Scholar 

  10. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, New York, 2008).

    Google Scholar 

  11. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura and T. Taira, Opt. Lett. 27, 1046 (2002).

    Article  ADS  Google Scholar 

  12. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).

    Article  ADS  Google Scholar 

  13. F. Konig and F. N. C. Wong, Appl. Phys. Lett. 84, 1644 (2004).

    Article  ADS  Google Scholar 

  14. V. G. Dmitriev, G. G. Gurzadyan and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed (Springer, Heidelberg, 1999).

    Book  Google Scholar 

  15. J. D. Bierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).

    Article  ADS  Google Scholar 

  16. R. Stoltzenberger and M. Scripsick, Proc. SPIE 3610, 23 (1999).

    Article  ADS  Google Scholar 

  17. V. Giovannetti, L. Maccone, J. H. Shapiro and F. N. C. Wong, Phys. Rev. Lett. 88, 183602 (2002).

    Article  ADS  Google Scholar 

  18. V. Giovannetti, L. Maccone, J. H. Shapiro and F. N. C. Wong, Phys. Rev. A 66, 043813 (2002).

    Article  ADS  Google Scholar 

  19. M. V. Pack, D. J. Armstrong and A. V. Smith, Appl. Opt. 43, 3319 (2004).

    Article  ADS  Google Scholar 

  20. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer and R. S. Feigelson, Appl. Opt. 26, 2390 (1987).

    Article  ADS  Google Scholar 

  21. K. Fradkin, A. Arie, A. Skliar and G. Rosenman, Appl. Phys. Lett. 74, 914 (1999).

    Article  ADS  Google Scholar 

  22. K. Kato, E. Takaoka and N. Umemura, Jpn. J. Appl. Phys. 42, 6420 (2003).

    Article  ADS  Google Scholar 

  23. K. Kato, N. Umemura and E. Tanaka, Jpn. J. Appl. Phys. 36, L403 (1997).

    Article  ADS  Google Scholar 

  24. Y. S. Oseledchik, A. I. Pisarevsky, A. L. prosvirnin, V. N. Lopatko, L. E. Kholodenkov, E. F. Titkov, A. A. Demidovich and A. P. Shkadarevich, In Proceeding of Laser Optics Conference (Leningrad University Press, Leningrad, 1990).

    Google Scholar 

  25. K. J. Lee, C. S. Yoon and F. Rotermund, Jpn. J. Appl. Phys. 44, 1264 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Jo Lee.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Lee, K.J. Extended phase matching properties of periodically poled potassium titanyl phosphate isomorphs. Journal of the Korean Physical Society 67, 837–842 (2015). https://doi.org/10.3938/jkps.67.837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.837

Keywords

Navigation