Recent progress and concerns in dementia: Distinguishing Alzheimer's disease and dementia with Lewy bodies via biochemical markers in the cerebrospinal fluid

Abstract

Dementia is mainly a neurodegenerative disorder involved in several systems, including central nervous system, endocrinology/metabolism system and circulatory system. Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) are the most common forms of the dementia, accounting for 60% - 80% and 10% - 20% of all cases, respectively. DLB is defined by widespread neocortical, limbic and brainstem Lewy bodies but frequently accompanied by variable levels of AD pathology. This pathological and clinical overlap makes their differential diagnosis complicated. Recent advances in the identification of disease bio-markers now make it possible to detect and distinguish their pathology in the early or preclinical stage of the diseases, even in cognitively normal individuals. In addition to the key biomarkers (amyloid β or Aβ, tau and α-synuclein), neurotrophins such as cocaine- and amphetamine-regulated transcript (CART) have also drawn attention due to their expressions and functions. This article summarizes the progress in the definition, pathology and diagnosis of dementia, with a focus on potential biochemical markers in the cere-brospinal fluid (CSF) in the differential diagnosis of the main forms of dementia. To prediction or early diagnosis of dementia, the role of specific and sensitive CSF biomarkers seems to be crucial in a routine clinical setting. The concerns and challenges in the biomarker field are also discussed.

Share and Cite:

Mao, P. (2012) Recent progress and concerns in dementia: Distinguishing Alzheimer's disease and dementia with Lewy bodies via biochemical markers in the cerebrospinal fluid. Advances in Biological Chemistry, 2, 176-190. doi: 10.4236/abc.2012.22022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Knopman, D.S., DeKosky, S.T., Cummings, J.L., Chui, H., Corey-Bloom, J., Relkin, N., Small, G.W., Miller, B. and Stevens, J.C. (2001) Practice parameter: Diagnosis of dementia (an evidence-based review). Neurology, 56, 1143-1153.
[2] Schoonenboom, N.S., Reesink, F.E., Verwey, N.A., Kester, M.I., Teunissen, C.E., van de Ven, P.M., Pijnenburg, Y.A., Blankenstein, M.A., Rozemuller, A.J. and Scheltens, P., et al. (2012) Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology, 78, 47-54. doi:10.1212/WNL.0b013e31823ed0f0
[3] McKeith, I.G., Burn, D.J., Ballard, C.G., Collerton, D., Jaros, E., Morris, C.M., McLaren, A., Perry, E.K., Perry, R. and Piggott, M.A., et al. (2003) Dementia with lewy bodies. Seminars in Clinical Neuropsychiatry, 8, 46-57. doi:10.1053/scnp.2003.50006
[4] Jellinger, K.A. (2009) Formation and development of lewy pathology: A critical update. Journal of Neurology, 256, 270-279. doi:10.1007/s00415-009-5243-y
[5] Mukaetova-Ladinska, E.B., Monteith, R. and Perry, E.K. (2010) Cerebrospinal fluid biomarkers for dementia with lewy bodies. International Journal of Alzheimers’s Disease, 2010, 536538. doi:10.4061/2010/536538
[6] Lin, M.T. and Beal, M.F. (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 787-795. doi:10.1038/nature05292
[7] Martin, L.J. (2010) Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals (Ba-sel), 3, 839-915.
[8] Mao, P. and Reddy, P.H. (2011) Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in alzheimer's disease: Implications for early intervention and therapeutics. Biochimica et Biophysica Acta, 1812, 1359-1370.
[9] Hasan, M.K. and Mooney, R.P. (2011) The predisposing factors, biological markers, neuroimaging techniques and medical complications associated with alzheimer’s disease. The West Virginia Medical Journal, 107, 26-29.
[10] Cheung, W.W. and Mao, P. (2012) Recent advances in obesity: genetics and beyond. ISRN Endocrinology, 2012, 536905. doi:10.5402/2012/536905
[11] Mao, P., Ardeshiri, A., Jacks, R., Yang, S., Hurn, P.D. and Alkayed, N.J. (2007) Mitochondrial mechanism of neuroprotection by CART. European Journal of Neuroscience, 26, 624-632. doi:10.1111/j.1460-9568.2007.05691.x
[12] Mao, P., Meshul, C.K., Thuillier, P., Goldberg, N.R. and Reddy, P.H. (2012) CART peptide is a potential endogenous antioxidant and preferentially localized in mitochondria. PLoS One, 7, e29343. doi:10.1371/journal.pone.0029343
[13] Hyman, B.T., Phelps, C.H., Beach, T.G., Bigio, E.H., Cairns, N.J., Carrillo, M.C., Dickson, D.W., Duyckaerts, C., Frosch, M.P. and Masliah, E., et al. (2012) National institute on aging-alzheimer’s association guidelines for the neuropathologic assessment of alzheimer’s disease. Alzheimers Dement, 8, 1-13. doi:10.1016/j.jalz.2011.10.007
[14] Hebert, L.E., Scherr, P.A., Bienias, J.L., Bennett, D.A. and Evans, D.A. (2003) Alzheimer disease in the US population: Prevalence estimates using the 2000 census. Archives of Neurology, 60, 1119-1122. doi:10.1001/archneur.60.8.1119
[15] McKeith, I.G., Dickson, D.W., Lowe, J., Emre, M., O’Brien, J.T., Feldman, H., Cummings, J., Duda, J.E., Lippa, C. and Perry, E.K. et al. (2005) Diagnosis and management of dementia with lewy bodies: Third report of the DLB consortium. Neurology, 65, 1863-1872. doi:10.1212/01.wnl.0000187889.17253.b1
[16] Kobayashi, M., Sato, T., Sato, A. and Imamura, T. (2009) Oldest-old dementia in a japanese memory clinic. Brain Nerve, 61, 972-978.
[17] Gravina, S.A., Ho, L., Eckman, C.B., Long, K.E., Otvos, L. Jr., Younkin, L.H., Suzuki, N. and Younkin, S.G. (1995) Amyloid beta protein (A beta) in alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). The Journal of Biological Chemistry, 270, 7013-7016.
[18] Martorana, A., Esposito, Z. and Koch, G. (2010) Beyond the cholinergic hypothesis: Do current drugs work in alzheimer's disease? CNS Neuroscience & Therapeutics, 16, 235-245.
[19] Hut, R.A. and Van der Zee, E.A. (2011) The cholinergic system, circadian rhythmicity, and time memory. Behavioural Brain Research, 221, 466-480. doi:10.1016/j.bbr.2010.11.039
[20] Robinson, L., Platt, B. and Riedel, G. (2011) Involvement of the cholinergic system in conditioning and perceptual memory. Behavioural Brain Research, 221, 443-465. doi:10.1016/j.bbr.2011.01.055
[21] Kar, S., Slowikowski, S.P., Westaway, D. and Mount, H.T. (2004) Interactions between beta-amyloid and central cholinergic neurons: Implications for Alzheimer’s disease. Journal of Psychiatry and Neuroscience, 29, 427-441.
[22] Pakaski, M. and Kalman, J. (2008) Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochemistry Intnational, 53, 103-111. doi:10.1016/j.neuint.2008.06.005
[23] Schliebs, R. and Arendt, T. (2011) The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research, 221, 555-563. doi:10.1016/j.bbr.2010.11.058
[24] Mao, P. and Reddy, P.H. (2010) Is multiple sclerosis a mitochondrial disease? Biochimica et Biophysica Acta, 1802, 66-79.
[25] Beal, M.F. (2005) Mitochondria take center stage in aging and neurodegeneration. Annals of Neurology, 58, 495-505. doi:10.1002/ana.20624
[26] Swerdlow, R.H. (2011) Alzheimer’s disease pathologic cascades: Who comes first, what drives what. Neurotoxicity Research.
[27] Ittner, L.M. and Gotz, J. (2011) Amyloid-beta and tau—A toxic pas de deux in Alzheimer’s disease. Nature Reviews Neuroscience, 12, 65-72. doi:10.1038/nrn2967
[28] Reddy, P.H. (2011) Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Research, 1415, 136-148. doi:10.1016/j.brainres.2011.07.052
[29] Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., Jones, P.K., Ghanbari, H., Wataya, T. and Shimohama, S., et al. (2001) Oxidative damage is the earliest event in alzheimer disease. Journal of Neuropathology & Experimental Neurology, 60, 759-767.
[30] Lauren, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W. and Strittmatter, S.M. (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 457, 1128-1132. doi:10.1038/nature07761
[31] Leuner, K., Schutt, T., Kurz, C., Eckert, S.H., Schiller, C., Occhipinti, A., Mai, S., Jendrach, M., Eckert, G.P. and Kruse, S.E., et al. (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxidants & Redox Signaling, 16, 1421-1433. doi:10.1089/ars.2011.4173
[32] Kroner, Z. (2009) The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes? Alternative Medicine Review, 14, 373-379.
[33] Gotz, J., Ittner, L.M. and Lim, Y.A. (2009) Common features between diabetes mellitus and Alzheimer’s disease. Cellular and Molecular Life Sciences, 66, 1321-1325.
[34] Akter, K., Lanza, E.A., Martin, S.A., Myronyuk, N., Rua, M. and Raffa, R.B. (2011) Diabetes mellitus and Alzheimer’s disease: Shared pathology and treatment? British Journal of Clinical Pharmacology, 71, 365-376. doi:10.1111/j.1365-2125.2010.03830.x
[35] Lim, Y.A., Rhein, V., Baysang, G., Meier, F., Poljak, A., Raftery, M.J., Guilhaus, M., Ittner, L.M., Eckert, A. and Gotz, J. (2010) Abeta and human amylin share a common toxicity pathway via mitochondrial dysfunction. Proteomics, 10, 1621-1633. doi:10.1002/pmic.200900651
[36] Kalaria, R.N. (2000) The role of cerebral ischemia in Alzheimer’s disease. Neurobiology of Aging, 21, 321-330. doi:10.1016/S0197-4580(00)00125-1
[37] Quinn, J. (2003) Vascular dementia. Journal of the American Medical Directors Association, 4, S155-161. doi:10.1016/S1525-8610(04)70407-7
[38] Auld, D.S., Kornecook, T.J., Bastianetto, S. and Quirion, R. (2002) Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Progress in Neurobiology, 68, 209-245. doi:10.1016/S0301-0082(02)00079-5
[39] Schliebs, R. and Arendt, T. (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. Journal of Neural Transmission, 113, 1625-1644. doi:10.1007/s00702-006-0579-2
[40] Daulatzai, M.A. (2010) Early stages of pathogenesis in memory impairment during normal senescence and Alzheimer’s disease. Journal of Alzheimer’s Disease, 20, 355- 367.
[41] Tamagno, E., Guglielmotto, M., Aragno, M., Borghi, R., Autelli, R., Giliberto, L., Muraca, G., Danni, O., Zhu, X. and Smith, M.A., et al. (2008) Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the beta-amyloid precursor protein. Journal of Neurochemistry, 104, 683-695.
[42] Shen, C., Chen, Y., Liu, H., Zhang, K., Zhang, T., Lin, A. and Jing, N. (2008) Hydrogen peroxide promotes abeta production through JNK-dependent activation of gamma-secretase. The Journal of Biological Chemistry, 283, 17721-17730. doi:10.1074/jbc.M800013200
[43] De Leon, M.J., DeSanti, S., Zinkowski, R., Mehta, P.D., Pratico, D., Segal, S., Clark, C., Kerkman, D., DeBernardis, J. and Li, J., et al. (2004) MRI and CSF studies in the early diagnosis of Alzheimer’s disease. Journal of Internal Medicine, 256, 205-223. doi:10.1111/j.1365-2796.2004.01381.x
[44] Brys, M., Glodzik, L., Mosconi, L., Switalski, R., De Santi, S., Pirraglia, E., Rich, K., Kim, B.C., Mehta, P. and Zinkowski, R., et al., (2009) Magnetic resonance imaging improves cerebrospinal fluid biomarkers in the early detection of Alzheimer’s disease. Journal of Alzheimer’s Disease, 16, 351-362.
[45] Blennow, K. and Zetterberg, H. (2010) Is it time for biomarker-based diagnostic criteria for prodromal Alzhei- mer’s disease? Alzheimer’s Research & Therapy, 2, 8. doi:10.1186/alzrt31
[46] McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R. Jr., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J. and Mayeux, R., et al. (2011) The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the national institute on aging-Alz- heimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7, 263-269. doi:10.1016/j.jalz.2011.03.005
[47] Prvulovic, D. and Hampel, H. (2011) Amyloid beta (abeta) and phospho-tau (p-tau) as diagnostic biomarkers in alzheimer’s disease. Clinical Chemistry and Laboratory Medicine, 49, 367-374. doi:10.1515/cclm.2011.087
[48] Vos, S., van Rossum, I., Burns, L., Knol, D., Scheltens, P., Soininen, H., Wahlund, L.O., Hampel, H., Tsolaki, M. and Minthon, L., et al. (2012) Test sequence of CSF and MRI biomarkers for prediction of AD in subjects with MCI. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2011.12.017
[49] McKeith, I.G., Galasko, D., Kosaka, K., Perry, E.K., Dickson, D.W., Hansen, L.A., Salmon, D.P., Lowe, J., Mirra, S.S. and Byrne, E.J., et al. (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with lewy bodies (DLB): Report of the consortium on DLB international workshop. Neurology, 47, 1113-1124.
[50] Leverenz, J.B., Umar, I., Wang, Q., Montine, T.J., McMillan, P.J., Tsuang, D.W., Jin, J., Pan, C., Shin, J. and Zhu, D., et al. (2007) Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathology, 17, 139- 145. doi:10.1111/j.1750-3639.2007.00048.x
[51] Tofaris, G.K. and Spillantini, M.G. (2005) Alpha-synu- clein dysfunction in lewy body diseases. Movement Disordersrs, 20, S37-S44. doi:10.1002/mds.20538
[52] Volles, M.J. and Lansbury, P.T. Jr. (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry, 42, 7871-7878. doi:10.1021/bi030086j
[53] Paleologou, K.E., Kragh, C.L., Mann, D.M., Salem, S.A., Al-Shami, R., Allsop, D., Hassan, A.H., Jensen, P.H. and El-Agnaf, O.M. (2009) Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with lewy bodies. Brain, 132, 1093-1101. doi:10.1093/brain/awn349
[54] Tofaris, G.K., Kim, H.T., Hourez, R., Jung, J.W., Kim, K.P. and Goldberg, A.L. (2011) Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal- lysosomal pathway. Proceedings of the National Academy of Sciences USA, 108, 17004-17009. doi:10.1073/pnas.1109356108
[55] MacInnes, N., Iravani, M.M., Perry, E., Piggott, M., Perry, R., Jenner, P. and Ballard, C. (2008) Proteasomal abnormalities in cortical lewy body disease and the impact of proteasomal inhibition within cortical and cholinergic systems. Journal of Neural Transmission, 115, 869-878. doi:10.1007/s00702-008-0027-6
[56] Uversky, V.N. (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. Journal of Neurochemistry, 103, 17-37.
[57] Sugeno, N., Takeda, A., Hasegawa, T., Kobayashi, M., Kikuchi, A., Mori, F., Wakabayashi, K. and Itoyama, Y. (2008) Serine 129 phosphorylation of alpha-synuclein induces unfolded protein response-mediated cell death. The Journal of Biological Chemistry, 283, 23179-23188. doi:10.1074/jbc.M802223200
[58] Breydo, L., Wu, J.W. and Uversky, V.N. (2012) Alpha- synuclein misfolding and Parkinson’s disease. Biochimica et Biophysica Acta, 1822, 261-285.
[59] Beach, T.G., Adler, C.H., Sue, L.I., Peirce, J.B., Bachalakuri, J., Dalsing-Hernandez, J.E., Lue, L.F., Caviness, J.N., Connor, D.J. and Sabbagh, M.N., et al. (2008) Reduced striatal tyrosine hydroxylase in incidental lewy body disease. Acta Neuropathologica, 115, 445-451. doi:10.1007/s00401-007-0313-7
[60] Dalfo, E., Portero-Otin, M., Ayala, V., Martinez, A., Pamplona, R. and Ferrer, I. (2005) Evidence of oxidative stress in the neocortex in incidental lewy body disease. Journal of Neuropathology & Experimental Neurology, 64, 816-830. doi:10.1097/01.jnen.0000179050.54522.5a
[61] Dalfo, E. and Ferrer, I. (2008) Early alpha-synuclein lipoxidation in neocortex in lewy body diseases. Neurobiology of Aging, 29, 408-417. doi:10.1016/j.neurobiolaging.2006.10.022
[62] Navarro, A., Boveris, A., Bandez, M.J., Sanchez-Pino, M.J., Gomez, C., Muntane, G. and Ferrer, I. (2009) Human brain cortex: Mitochondrial oxidative damage and adaptive response in parkinson disease and in dementia with lewy bodies. Free Radical Biology & Medicine, 46, 1574-1580. doi:10.1016/j.freeradbiomed.2009.03.007
[63] Mao, P., Gallagher, P., Nedungadi, S., Manczak, M., Shirendeb, U.P., Kohama, S.G., Ferguson, B., Park, B.S. and Reddy, P.H. (2012) Mitochondrial DNA deletions and differential mitochondrial DNA content in rhesus monkeys: Implications for aging. Biochimica et Biophysica Acta, 1822, 111-119.
[64] Kume, K., Kikukawa, M., Hanyu, H., Takata, Y., Umahara, T., Sakurai, H., Kanetaka, H., Ohyashiki, K., Ohyashiki, J.H. and Iwamoto, T. (2012) Telomere length shortening in patients with dementia with lewy bodies. European Journal of Neurology. doi:10.1111/j.1468-1331.2011.03655.x
[65] Ahmad, A., Burns, C.S., Fink, A.L. and Uversky, V.N. (2012) Peculiarities of copper binding to alpha-synuclein. Journal of Biomolecular Structure & Dynamics, 29, 825- 842.
[66] Gomez, A. and Ferrer, I. (2009) Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in lewy body diseases. Journal of Neuroscience Research, 87, 1002-1013. doi:10.1002/jnr.21904
[67] Manczak, M., Mao, P., Calkins, M.J., Cornea, A., Reddy, A.P., Murphy, M.P., Szeto, H.H., Park, B. and Reddy, P.H. (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in alzheimer's disease neurons. Journal of Alzheimer’s Disease, 20, S609-631.
[68] Braak. H., Del Tredici. K., Rub. U., de Vos. R.A., Jansen Steur. E.N. and Braak. E. (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197-211. doi:10.1016/S0197-4580(02)00065-9
[69] Leverenz, J.B., Hamilton, R., Tsuang, D.W., Schantz, A., Vavrek, D., Larson, E.B., Kukull, W.A., Lopez, O., Galasko, D. and Masliah, E., et al., (2008) Empiric refinement of the pathologic assessment of lewy-related pathology in the dementia patient. Brain Pathology, 18, 220-224. doi:10.1111/j.1750-3639.2007.00117.x
[70] Beach, T.G., Adler, C.H., Lue, L., Sue, L.I., Bachalakuri, J., Henry-Watson, J., Sasse, J., Boyer, S., Shirohi, S. and Brooks, R., et al. (2009) Unified staging system for lewy body disorders: Correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathologica, 117, 613-634. doi:10.1007/s00401-009-0538-8
[71] Montine, T.J., Phelps, C.H., Beach, T.G., Bigio, E.H., Cairns, N.J., Dickson, D.W., Duyckaerts, C., Frosch, M.P., Masliah, E. and Mirra, S.S., et al. (2012) National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathologica, 123, 1-11. doi:10.1007/s00401-011-0910-3
[72] Archer, T., Kostrzewa, R.M., Beninger, R.J. and Palomo, T. (2011) Staging neurodegenerative disorders: Structural, regional, biomarker, and functional progressions. Neurotoxicity Research, 19, 211-234. doi:10.1007/s12640-010-9190-2
[73] Blennow, K., Hampel, H., Weiner, M. and Zetterberg, H. (2010) Cerebrospinal fluid and plasma biomarkers in alzheimer disease. Nature Reviews Neuroscience, 6, 131- 144. doi:10.1038/nrneurol.2010.4
[74] Galasko, D., Clark, C., Chang, L., Miller, B., Green, R.C., Motter, R. and Seubert, P. (1997) Assessment of CSF levels of tau protein in mildly demented patients with Alzheimer’s disease. Neurology, 48, 632-635.
[75] Andreasen, N., Minthon, L., Clarberg, A., Davidsson, P., Gottfries, J., Vanmechelen, E., Vanderstichele, H., Winblad, B. and Blennow, K. (1999) Sensitivity, specificity, and stability of CSF-tau in AD in a community-based patient sample. Neurology, 53, 1488-1494.
[76] Arai, H., Higuchi, S. and Sasaki, H. (1997) Apolipoprotein E genotyping and cerebrospinal fluid tau protein: Implications for the clinical diagnosis of Alzheimer’s disease. Gerontology, 43, 2-10. doi:10.1159/000213879
[77] Kurz, A., Riemenschneider, M., Buch, K., Willoch, F., Bartenstein, P., Muller, U. and Guder, W. (1998) Tau protein in cerebrospinal fluid is significantly increased at the earliest clinical stage of Alzheimer’s disease. Alzheimer Disease and Associated Disorders, 12, 372-377. doi:10.1097/00002093-199812000-00020
[78] Arai, H., Morikawa, Y., Higuchi, M., Matsui, T., Clark, C.M., Miura, M., Machida, N., Lee, V.M., Trojanowski, J.Q. and Sasaki, H. (1997) Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochemical and Biophysical Research Communications, 236, 262-264. doi:10.1006/bbrc.1997.6908
[79] Hampel, H., Teipel, S.J., Fuchsberger, T., Andreasen, N., Wiltfang, J., Otto, M., Shen, Y., Dodel, R., Du, Y. and Farlow, M., et al. (2004) Value of CSF beta-amyloid1-42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Molecular Psychiatry, 9, 705-710.
[80] Hansson, O., Zetterberg, H., Buchhave, P., Londos, E., Blennow, K. and Minthon, L. (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: A follow-up study. The Lancet Neurology, 5, 228-234. doi:10.1016/S1474-4422(06)70355-6
[81] Fagan, A.M., Roe, C.M., Xiong, C., Mintun, M.A., Morris, J.C. and Holtzman, D.M. (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Archives of Neurology, 64, 343-349. doi:10.1001/archneur.64.3.noc60123
[82] Mattsson, N., Zetterberg, H., Hansson, O., Andreasen, N., Parnetti, L., Jonsson, M., Herukka, SK, van der Flier, W.M., Blankenstein, M.A., Ewers, M., Rich, K., Kaiser, E., Verbeek, M., Tsolaki, M., Mulugeta, E., Rosén, E., Aarsland, D., Visser, P.J., Schr?der, J., Marcusson, J., de Leon, M., Hampel, H., Scheltens, P., Pirttil?, T., Wallin, A., J?nhagen, M.E., Minthon, L., Winblad, B. and Blennow, K. (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. The Journal
[83] Jahn, H., Wittke, S., Zurbig, P., Raedler, T.J., Arlt, S., Kellmann, M., Mullen, W., Eichenlaub, M., Mischak, H. and Wiedemann, K. (2011) Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: Identification and prospective evaluation of new synaptic biomarkers. PLoS One, 6, e26540. doi:10.1371/journal.pone.0026540
[84] Stomrud, E., Hansson, O., Zetterberg, H., Blennow, K., Minthon, L. and Londos, E. (2010) Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults. Archives of Neurology, 67, 217-223. doi:10.1001/archneurol.2009.316
[85] Buchhave, P., Minthon, L., Zetterberg, H., Wallin, A.K., Blennow, K. and Hansson, O. (2012) Cerebrospinal fluid levels of beta-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of alzheimer dementia. Archives of General Psychiatry, 69, 98- 106. doi:10.1001/archgenpsychiatry.2011.155
[86] Lanari, A. and Parnetti, L. (2009) Cerebrospinal fluid biomarkers and prediction of conversion in patients with mild cognitive impairment: 4-year follow-up in a routine clinical setting. Scientific World Journal, 9, 961-966. doi:10.1100/tsw.2009.106
[87] Santos, A.N., Ewers, M., Minthon, L., Simm, A., Silber, R.E., Blennow, K., Prvulovic, D., Hansson, O. and Hampel, H. (2012) Amyloid-beta oligomers in cerebrospinal fluid are associated with cognitive decline in patients with alzheimer's disease. Journal of Alzheimer’s Disease.
[88] Gao, C.M., Yam, A.Y., Wang, X., Magdangal, E., Salisbury, C., Peretz, D., Zuckermann, R.N., Connolly, M.D., Hansson, O. and Minthon, L., et al. (2010) Abeta40 oligomers identified as a potential biomarker for the diagnosis of alzheimer's disease. PLoS One, 5, e15725. doi:10.1371/journal.pone.0015725
[89] Straten, G., Eschweiler, G.W., Maetzler, W., Laske, C. and Leyhe, T. (2009) Glial cell-line derived neurotrophic factor (GDNF) concentrations in cerebrospinal fluid and serum of patients with early Alzheimer’s disease and normal controls. Journal of Alzheimer’s Disease, 18, 331- 337.
[90] Schultz, K., Wiehager, S., Nilsson, K., Nielsen, J.E., Lindquist, S.G., Hjermind, L.E., Andersen, B.B., Wallin, A., Nilsson, C. and Petersen, A. (2009) Reduced CSF CART in dementia with lewy bodies. Neuroscience Letters, 453, 104-106. doi:10.1016/j.neulet.2009.02.008
[91] Sha, D., Li, L., Ye, L., Liu, R. and Xu, Y. (2009) Icariin inhibits neurotoxicity of beta-amyloid by upregulating cocaine-regulated and amphetamine-regulated transcripts. Neuroreport, 20, 1564-1567. doi:10.1097/WNR.0b013e328332d345
[92] Jiang, H., Hampel, H., Prvulovic, D., Wallin, A., Blennow, K., Li, R. and Shen, Y. (2011) Elevated CSF levels of TACE activity and soluble TNF receptors in subjects with mild cognitive impairment and patients with Alzheimer’s disease. Molecular Neurodegeneration, 6, 69. doi:10.1186/1750-1326-6-69
[93] Laske, C., Stransky, E., Hoffmann, N., Maetzler, W., Straten, G., Eschweiler, G.W. and Leyhe, T. (2010) Macrophage colony-stimulating factor (M-CSF) in plasma and CSF of patients with mild cognitive impairment and alzheimer's disease. Current Alzheimer Research, 7, 409-414. doi:10.2174/156720510791383813
[94] Bibl, M., Mollenhauer, B., Lewczuk, P., Esselmann, H., Wolf, S., Trenkwalder, C., Otto, M., Stiens, G., Ruther, E. and Kornhuber, J., et al. (2007) Validation of amyloid- beta peptides in CSF diagnosis of neurodegenerative dementias. Molecular Psychiatry, 12, 671-680. doi:10.1038/sj.mp.4001967
[95] Mollenhauer, B., Esselmann, H., Trenkwalder, C., Schulz- Schaeffer, W., Kretzschmar, H., Otto, M., Wiltfang, J. and Bibl, M. (2011) CSF amyloid-beta peptides in neuropathologically diagnosed dementia with lewy bodies and alzheimer's disease. Journal of Alzheimer’s Disease, 24, 383-391.
[96] Mulugeta, E., Londos, E., Ballard, C., Alves, G., Zetterberg, H., Blennow, K., Skogseth, R., Minthon, L. and Aarsland, D. (2011) CSF amyloid beta38 as a novel diagnostic marker for dementia with lewy bodies. Journal of Neurology, Neurosurgery & Psychiatry, 82, 160-164. doi:10.1136/jnnp.2009.199398
[97] Koopman ,K., Le Bastard, N., Martin, J.J., Nagels, G., De Deyn, P.P. and Engelborghs, S. (2009) Improved discrimination of autopsy-confirmed Alzheimer’s disease (AD) from non-AD dementias using CSF P-tau(181P). Neurochemistry International, 55, 214-218. doi:10.1016/j.neuint.2009.02.017
[98] Kasuga, K., Tokutake, T., Ishikawa, A., Uchiyama, T., Tokuda, T., Onodera, O., Nishizawa, M. and Ikeuchi, T. (2010) Differential levels of alpha-synuclein, beta-amyloid42 and tau in CSF between patients with dementia with lewy bodies and Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81, 608-610. doi:10.1136/jnnp.2009.197483
[99] Reesink, F.E., Lemstra, A.W., van Dijk, K.D., Berendse, H.W., van de Berg, W.D., Klein, M., Blankenstein, M.A., Scheltens, P., Verbeek, M.M. and van der Flier, W.M. (2010) CSF alpha-synuclein does not discriminate dementia with lewy bodies from Alzheimer’s disease. Journal of Alzheimer’s Disease, 22, 87-95.
[100] Aerts, M.B., Esselink, R.A., Claassen, J.A., Abdo, W.F., Bloem, B.R. and Verbeek, M.M. (2011) CSF tau, Abeta42, and MHPG differentiate dementia with lewy bodies from Alzheimer’s disease. Journal of Alzheimer’s Disease, 27, 377-384.
[101] Engelborghs, S., Vloeberghs, E., Le Bastard, N., Van Buggenhout, M., Marien, P., Somers, N., Nagels, G., Pickut, B.A. and De Deyn, P.P. (2008) The dopaminergic neurotransmitter system is associated with aggression and agitation in frontotemporal dementia. Neurochemistry International, 52, 1052-1060. doi:10.1016/j.neuint.2007.10.018
[102] Rogge, G., Jones, D., Hubert, G.W., Lin, Y. and Kuhar, M.J. (2008) CART peptides: Regulators of body weight, reward and other functions. Nature Reviews Neuroscience, 9, 747-758. doi:10.1038/nrn2493
[103] Upadhya, M.A., Nakhate, K.T., Kokare, D.M., Singru, P.S. and Subhedar, N.K. (2011) Cocaine- and amphetamine- regulated transcript peptide increases spatial learning and memory in rats. Life Sciences, 88, 322-334. doi:10.1016/j.lfs.2010.12.008
[104] Balkan, B., Keser, A., Gozen, O., Koylu, E.O., Dagci, T., Kuhar, M.J. and Pogun, S. (2012) Forced swim stress elicits region-specific changes in CART expression in the stress axis and stress regulatory brain areas. Brain Research, 1432, 56-65. doi:10.1016/j.brainres.2011.11.006
[105] Mao, P. and Jacks, R. (2007) Transcriptional activity by cocaine-amphetamine-regulated transcript. Molecular Psychiatry, 12, 223-224. doi:10.1038/sj.mp.4001928
[106] Wu, B., Hu, S., Yang, M., Pan, H. and Zhu, S. (2006) CART peptide promotes the survival of hippocampal neu- rons by upregulating brain-derived neurotrophic factor. Biochemical and Biophysical Research Communications, 347, 656-661. doi:10.1016/j.bbrc.2006.06.117
[107] Whitwell, J.L., Weigand, S.D., Shiung, M.M., Boeve, B.F., Ferman, T.J., Smith, G.E., Knopman, D.S., Petersen, R.C., Benarroch, E.E. and Josephs, K.A., et al. (2007) Focal atrophy in dementia with lewy bodies on MRI: A distinct pattern from Alzheimer’s disease. Brain, 130, 708-719. doi:10.1093/brain/awl388
[108] Piao, Y.S., Wakabayashi, K., Hayashi, S., Yoshimoto, M. and Takahashi, H. (2000) Aggregation of alpha-synu- clein/NACP in the neuronal and glial cells in diffuse lewy body disease: A survey of six patients. Clinical Neuropathology, 19, 163-169.
[109] Shieh, K.R. (2003) Effects of the cocaine- and amphetamine-regulated transcript peptide on the turnover of central dopaminergic neurons. Neuropharmacology, 44, 940- 948. doi:10.1016/S0028-3908(03)00095-9
[110] Mao, P. (2011) Potential antidepressant role of neurotransmitter CART: Implications for mental disorders. Depression Research and Treatment, 2011, 762139. doi:10.1155/2011/762139
[111] Biagioni, M.C. and Galvin, J.E. (2011) Using biomarkers to improve detection of Alzheimer’s disease. Neurodegener Disease Managment, 1, 127-139.
[112] Mattsson, N., Andreasson, U., Persson, S., Arai, H., Batish, S.D., Bernardini, S., Bocchio-Chiavetto, L., Blankenstein, M.A., Carrillo, M.C. and Chalbot, S., et al. (2011) The Alzheimer’s association external quality control program for cerebrospinal fluid biomarkers. Alzheimer’s & Dementia, 7, 386-395.
[113] Bech, P., Winstanley, V., Murphy, K.G., Sam, A.H., Meeran, K., Ghatei, M.A. and Bloom, S.R. (2008) Elevated cocaine- and amphetamine-regulated transcript immunoreactivity in the circulation of patients with neuroendocrine malignancy. The Journal of Clinical Endocrinology & Metabolism, 93, 1246-53. doi:10.1210/jc.2007-1946
[114] Rosengren, L., Vanmechelen, E. and Blennow, K. (2005) Simultaneous measurement of beta-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clinical Chemistry, 51, 336-345. doi:10.1373/clinchem.2004.039347
[115] Shaw, L.M., Vanderstichele, H., Knapik-Czajka, M., Figurski, M., Coart, E., Blennow, K., Soares, H., Simon, A,J., Lewczuk, P., Dean, R.A., Siemers, E., Potter, W., Lee, V.M. and Trojanowski, J.Q. (2011) Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathologica, 121, 597-609. doi:10.1007/s00401-011-0808-0
[116] Ertekin-Taner, N., Younkin, L.H., Yager, D.M., Parfitt, F., Baker, M.C., Asthana, S., Hutton, M.L., Younkin, S.G. and Graff-Radford, N.R. (2008) Plasma amyloid beta protein is elevated in late-onset Alzheimer’s disease families. Neurology, 70, 596-606. doi:10.1212/01.wnl.0000278386.00035.21
[117] Mao, P., Manczak, M., Calkins, M.J., Truong, Q., Reddy, T.P., Reddy, A.P., Shirendeb, U., Lo, H.H., Rabinovitch, P.S. and Reddy, P.H. (2012) Mitochondria-targeted catalase reduces abnormal APP processing, amyloid beta production and BA- CE1 in a mouse model of Alzheimer’s disease: Implications for neuroprotection and lifespan extension. Human Molecular Genetics, 21.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.